GAN-BASED JOINT ACTIVITY DETECTION AND CHANNEL ESTIMATION FOR GRANT-FREE RANDOM ACCESS
2022
会议录名称ICASSP, IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING - PROCEEDINGS
ISSN1520-6149
卷号2022-May
页码4413-4417
发表状态已发表
DOI10.1109/ICASSP43922.2022.9746152
摘要Joint activity detection and channel estimation (JADCE) for grant-free random access is a critical issue that needs to be addressed to support massive connectivity in IoT networks. However, the existing model-free learning method can only achieve either activity detection or channel estimation, but not both. In this paper, we propose a novel model-free learning method based on generative adversarial network (GAN) to tackle the JADCE problem. We adopt the U-net architecture to build the generator rather than the standard GAN architecture, where a pre-estimated value that contains the activity information is adopted as input to the generator. By leveraging the properties of the pseudoinverse, the generator is refined by using an affine projection and a skip connection to ensure the output of the generator is consistent with the measurement. Moreover, we build a two-layer fully-connected neural network to design pilot matrix for reducing the impact of receiver noise. Simulation results show that the proposed method outperforms the existing methods in high SNR regimes, as both data consistency projection and pilot matrix optimization improve the learning ability. © 2022 IEEE
会议录编者/会议主办者Chinese and Oriental Languages Information Processing Society (COLPIS) ; Singapore Exhibition and Convention Bureau ; The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) ; The Institute of Electrical and Electronics Engineers Signal Processing Society
关键词Massive connectivity joint activity detection and channel estimation deep generative adversarial network
会议名称47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Virtual, Online, Singapore
会议日期May 23, 2022 - May 27, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China (NSFC)[U20A20159]
WOS研究方向Acoustics ; Computer Science ; Engineering
WOS类目Acoustics ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000864187904140
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20222312198126
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/206370
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_周勇组
通讯作者Liang, Shuang; Zou, Yinan; Zhou, Yong
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liang, Shuang,Zou, Yinan,Zhou, Yong. GAN-BASED JOINT ACTIVITY DETECTION AND CHANNEL ESTIMATION FOR GRANT-FREE RANDOM ACCESS[C]//Chinese and Oriental Languages Information Processing Society (COLPIS), Singapore Exhibition and Convention Bureau, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), The Institute of Electrical and Electronics Engineers Signal Processing Society. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2022:4413-4417.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Shuang]的文章
[Zou, Yinan]的文章
[Zhou, Yong]的文章
百度学术
百度学术中相似的文章
[Liang, Shuang]的文章
[Zou, Yinan]的文章
[Zhou, Yong]的文章
必应学术
必应学术中相似的文章
[Liang, Shuang]的文章
[Zou, Yinan]的文章
[Zhou, Yong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ICASSP43922.2022.9746152.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。