| |||||||
ShanghaiTech University Knowledge Management System
Network stratification analysis for identifying function-specific network layers | |
2016 | |
发表期刊 | MOLECULAR BIOSYSTEMS (IF:3.336[JCR-2019],2.986[5-Year]) |
ISSN | 1742-206X |
卷号 | 12期号:4页码:1232-1240 |
发表状态 | 已发表 |
DOI | 10.1039/c5mb00782h |
摘要 | A major challenge of systems biology is to capture the rewiring of biological functions (e.g. signaling pathways) in a molecular network. To address this problem, we proposed a novel computational framework, namely network stratification analysis (NetSA), to stratify the whole biological network into various function-specific network layers corresponding to particular functions (e.g. KEGG pathways), which transform the network analysis from the gene level to the functional level by integrating expression data, the gene/protein network and gene ontology information altogether. The application of NetSA in yeast and its comparison with a traditional network-partition both suggest that NetSA can more effectively reveal functional implications of network rewiring and extract significant phenotype-related biological processes. Furthermore, for time-series or stage-wise data, the function-specific network layer obtained by NetSA is also shown to be able to characterize the disease progression in a dynamic manner. In particular, when applying NetSA to hepatocellular carcinoma and type 1 diabetes, we can derive functional spectra regarding the progression of the disease, and capture active biological functions (i.e. active pathways) in different disease stages. The additional comparison between NetSA and SPIA illustrates again that NetSA could discover more complete biological functions during disease progression. Overall, NetSA provides a general framework to stratify a network into various layers of function-specific sub-networks, which can not only analyze a biological network on the functional level but also investigate gene rewiring patterns in biological processes. |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Knowledge Innovation Program of SIBS of CAS[2013KIP218] |
WOS研究方向 | Biochemistry & Molecular Biology |
WOS类目 | Biochemistry & Molecular Biology |
WOS记录号 | WOS:000372612600018 |
出版者 | ROYAL SOC CHEMISTRY |
WOS关键词 | PROTEIN INTERACTION NETWORKS ; GROWTH-FACTOR-I ; GENE ONTOLOGY ; BIOLOGICAL PATHWAYS ; DATABASE ; MODULES ; KNOWLEDGEBASE ; REACTOME ; CLASSIFICATION ; PREDICTION |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2041 |
专题 | 生命科学与技术学院_特聘教授组_陈洛南组 |
通讯作者 | Liu, Juan; Xu, Dong; Chen, Luonan |
作者单位 | 1.Wuhan Univ, Sch Comp, Wuhan 430072, Peoples R China 2.Chinese Acad Sci, Key Lab Syst Biol, Innovat Ctr Cell Signaling Network, Inst Biochem & Cell Biol,Shanghai Inst Biol Sci, Shanghai 200233, Peoples R China 3.Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA 4.Univ Missouri, Christopher S Bond Life Sci Ctr, Columbia, MO 65211 USA 5.Columbia Univ, Dept Syst Biol, New York, NY 10032 USA 6.Columbia Univ, Dept Biomed Informat, New York, NY 10032 USA 7.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China 8.Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan |
通讯作者单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Chuanchao,Wang, Jiguang,Zhang, Chao,et al. Network stratification analysis for identifying function-specific network layers[J]. MOLECULAR BIOSYSTEMS,2016,12(4):1232-1240. |
APA | Zhang, Chuanchao,Wang, Jiguang,Zhang, Chao,Liu, Juan,Xu, Dong,&Chen, Luonan.(2016).Network stratification analysis for identifying function-specific network layers.MOLECULAR BIOSYSTEMS,12(4),1232-1240. |
MLA | Zhang, Chuanchao,et al."Network stratification analysis for identifying function-specific network layers".MOLECULAR BIOSYSTEMS 12.4(2016):1232-1240. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。