消息
×
loading..
OPTIMAL LINEAR COOPERATION FOR SIGNAL CLASSIFICATION
2016
会议录名称2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS
ISSN2379-190X
卷号2016-May
页码3631-3635
发表状态已发表
DOI10.1109/ICASSP.2016.7472354
摘要In distributed inference, cooperation among networked agents can be exploited to enhance the performance of each individual agent. In this paper, we consider signal classification over a network of agents, where each agent observes a certain signal under a particular signal-to-noise ratio (SNR). Each agent produces a statistic that summarizes its observations over a time period and then forwards it to a fusion center for identifying the type of signal in a global manner. A linear cooperation strategy for signal classification is formulated as maximizing the classification probability subject to constrained misclassification probabilities. We show that this problem can be transformed into a convex problem under some conditions and linear cooperation is a simple but effective strategy that can greatly enhance the performance of signal classification over networked agents.
关键词M-ary hypothesis testing signal classification data fusion distributed inference convex optimization
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Shanghai
会议日期20-25 March 2016
URL查看原文
收录类别CPCI ; EI
语种英语
资助项目National Natural Science Foundation of China[61540044]
WOS研究方向Acoustics ; Engineering
WOS类目Acoustics ; Engineering, Electrical & Electronic
WOS记录号WOS:000388373403154
出版者IEEE
EI入藏号20162402489212
WOS关键词DISTRIBUTED DETECTION
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2026
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Quan, Zhi
作者单位
1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
推荐引用方式
GB/T 7714
Quan, Zhi,Ye, Muyang,Ding, Zhi,et al. OPTIMAL LINEAR COOPERATION FOR SIGNAL CLASSIFICATION[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2016:3631-3635.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Quan, Zhi]的文章
[Ye, Muyang]的文章
[Ding, Zhi]的文章
百度学术
百度学术中相似的文章
[Quan, Zhi]的文章
[Ye, Muyang]的文章
[Ding, Zhi]的文章
必应学术
必应学术中相似的文章
[Quan, Zhi]的文章
[Ye, Muyang]的文章
[Ding, Zhi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2026.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。