| |||||||
ShanghaiTech University Knowledge Management System
Few-shot Neural Human Performance Rendering from Sparse RGBD Videos | |
2021 | |
会议录名称 | IJCAI INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE |
ISSN | 1045-0823 |
页码 | 938-944 |
发表状态 | 已发表 |
摘要 | Recent neural rendering approaches for human activities achieve remarkable view synthesis results, but still rely on dense input views or dense training with all the capture frames, leading to deployment difficulty and inefficient training overload. However, existing advances will be ill-posed if the input is both spatially and temporally sparse. To fill this gap, in this paper we propose a few-shot neural human rendering approach (FNHR) from only sparse RGBD inputs, which exploits the temporal and spatial redundancy to generate photo-realistic free-view output of human activities. Our FNHR is trained only on the key-frames which expand the motion manifold in the input sequences. We introduce a two-branch neural blending to combine the neural point render and classical graphics texturing pipeline, which integrates reliable observations over sparse key-frames. Furthermore, we adopt a patch-based adversarial training process to make use of the local redundancy and avoids over-fitting to the key-frames, which generates fine-detailed rendering results. Extensive experiments demonstrate the effectiveness of our approach to generate high-quality free view-point results for challenging human performances under the sparse setting. © 2021 International Joint Conferences on Artificial Intelligence. All rights reserved. |
会议录编者/会议主办者 | International Joint Conferences on Artifical Intelligence (IJCAI) |
关键词 | Artificial intelligence Redundancy Rendering (computer graphics) Human activities Human performance Ill posed Input sequence Key-frames Patch based Photo-realistic Rendering approach Temporal and spatial redundancies View synthesis |
会议名称 | 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 |
出版地 | ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY |
会议地点 | Virtual, Online, Canada |
会议日期 | August 19, 2021 - August 27, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | NSFC programs["61976138","61977047"] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001202335501002 |
出版者 | International Joint Conferences on Artificial Intelligence |
EI入藏号 | 20220911735580 |
EI主题词 | Blending |
EI分类号 | 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 802.3 Chemical Operations |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/195181 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_许岚组 |
通讯作者 | Xu, Lan |
作者单位 | 1.Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University; 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences; 3.University of Chinese Academy of Sciences |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Pang, Anqi,Chen, Xin,Luo, Haimin,et al. Few-shot Neural Human Performance Rendering from Sparse RGBD Videos[C]//International Joint Conferences on Artifical Intelligence (IJCAI). ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY:International Joint Conferences on Artificial Intelligence,2021:938-944. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。