消息
×
loading..
Few-shot Neural Human Performance Rendering from Sparse RGBD Videos
2021
会议录名称IJCAI INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
ISSN1045-0823
页码938-944
发表状态已发表
摘要

Recent neural rendering approaches for human activities achieve remarkable view synthesis results, but still rely on dense input views or dense training with all the capture frames, leading to deployment difficulty and inefficient training overload. However, existing advances will be ill-posed if the input is both spatially and temporally sparse. To fill this gap, in this paper we propose a few-shot neural human rendering approach (FNHR) from only sparse RGBD inputs, which exploits the temporal and spatial redundancy to generate photo-realistic free-view output of human activities. Our FNHR is trained only on the key-frames which expand the motion manifold in the input sequences. We introduce a two-branch neural blending to combine the neural point render and classical graphics texturing pipeline, which integrates reliable observations over sparse key-frames. Furthermore, we adopt a patch-based adversarial training process to make use of the local redundancy and avoids over-fitting to the key-frames, which generates fine-detailed rendering results. Extensive experiments demonstrate the effectiveness of our approach to generate high-quality free view-point results for challenging human performances under the sparse setting. © 2021 International Joint Conferences on Artificial Intelligence. All rights reserved.

会议录编者/会议主办者International Joint Conferences on Artifical Intelligence (IJCAI)
关键词Artificial intelligence Redundancy Rendering (computer graphics) Human activities Human performance Ill posed Input sequence Key-frames Patch based Photo-realistic Rendering approach Temporal and spatial redundancies View synthesis
会议名称30th International Joint Conference on Artificial Intelligence, IJCAI 2021
出版地ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY
会议地点Virtual, Online, Canada
会议日期August 19, 2021 - August 27, 2021
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目NSFC programs["61976138","61977047"] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:001202335501002
出版者International Joint Conferences on Artificial Intelligence
EI入藏号20220911735580
EI主题词Blending
EI分类号723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 723.5 Computer Applications ; 802.3 Chemical Operations
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/195181
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_许岚组
通讯作者Xu, Lan
作者单位
1.Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University;
2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences;
3.University of Chinese Academy of Sciences
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Pang, Anqi,Chen, Xin,Luo, Haimin,et al. Few-shot Neural Human Performance Rendering from Sparse RGBD Videos[C]//International Joint Conferences on Artifical Intelligence (IJCAI). ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY:International Joint Conferences on Artificial Intelligence,2021:938-944.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Pang, Anqi]的文章
[Chen, Xin]的文章
[Luo, Haimin]的文章
百度学术
百度学术中相似的文章
[Pang, Anqi]的文章
[Chen, Xin]的文章
[Luo, Haimin]的文章
必应学术
必应学术中相似的文章
[Pang, Anqi]的文章
[Chen, Xin]的文章
[Luo, Haimin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。