ShanghaiTech University Knowledge Management System
Ultramicroporous Organophosphorus Polymers via Self-Accelerating P-C Coupling Reaction: Kinetic Effects on Crosslinking Environments and Porous Structures | |
2022-07-06 | |
发表期刊 | JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (IF:14.4[JCR-2023],14.8[5-Year]) |
ISSN | 0002-7863 |
EISSN | 1520-5126 |
发表状态 | 已发表 |
DOI | 10.1021/jacs.2c03759 |
摘要 | Porous organic polymers (POPs) have drawn significant attention in diverse applications. However, factors affecting the heterogeneous polymerization and porosity of POPs are still not well understood. Herein, we report a new strategy to construct porous organophosphorus polymers (POPPs) with high surface areas (1283 m(2)/g) and ultramicroporous structures (0.67 nm). The strategy harnesses an efficient transition-metal-catalyzed phosphorus-carbon (P-C) coupling reaction at the trigonal pyramidal P-center, which is distinct from the typical carbon-carbon coupling reaction utilized in the synthesis of POPs. As the first kinetic study on the coupling reaction of POPs, we uncovered a self-accelerating reaction characteristic, which is controlled by the choice of bases and catalysts. The self-accelerating characteristic of the P-C coupling reaction is beneficial for the high surface area and uniform ultramicroporosity of POPPs. The direct crosslinking of the P-centers allows P-31 solid-state (ss)NMR experiments to unambiguously reveal the crosslinking environments of POPPs. Leveraging on the kinetic studies and P-31 ssNMR studies, we were able to reveal the kinetic effects of the P-C coupling reaction on both the crosslinking environments and the porous structures of POPPs. Furthermore, our studies show that the CO2 uptake capacity of POPPs is highly dependent on their porous structures. Overall, our studies paves the way to design new POPs with better controlled chemical and ultramicroporous structures, which have potential applications for CO2 capture and separation. |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCIE |
语种 | 英语 |
资助项目 | Natural Science Foundation of Shanghai[19ZR1433700] ; Analytical Instrumentation Center, SPST, ShanghaiTech University[SPST-AIC10112914] |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Multidisciplinary |
WOS记录号 | WOS:000818698500001 |
出版者 | AMER CHEMICAL SOC |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/192381 |
专题 | 物质科学与技术学院 物质科学与技术学院_PI研究组_李涛组 物质科学与技术学院_PI研究组_任毅组 物质科学与技术学院_PI研究组_刘海铭组 物质科学与技术学院_硕士生 |
通讯作者 | Ren, Yi |
作者单位 | ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Zhikai,Wang, Qing,Liu, Haiming,et al. Ultramicroporous Organophosphorus Polymers via Self-Accelerating P-C Coupling Reaction: Kinetic Effects on Crosslinking Environments and Porous Structures[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY,2022. |
APA | Zhang, Zhikai,Wang, Qing,Liu, Haiming,Li, Tao,&Ren, Yi.(2022).Ultramicroporous Organophosphorus Polymers via Self-Accelerating P-C Coupling Reaction: Kinetic Effects on Crosslinking Environments and Porous Structures.JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. |
MLA | Zhang, Zhikai,et al."Ultramicroporous Organophosphorus Polymers via Self-Accelerating P-C Coupling Reaction: Kinetic Effects on Crosslinking Environments and Porous Structures".JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。