消息
×
loading..
Texture Repairing by Unified Low Rank Optimization
2016-05
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY (IF:1.2[JCR-2023],1.7[5-Year])
ISSN1000-9000
卷号31期号:3页码:525-546
发表状态已发表
DOI10.1007/s11390-016-1645-3
摘要In this paper, we show how to harness both low-rank and sparse structures in regular or near-regular textures for image completion. Our method is based on a unified formulation for both random and contiguous corruption. In addition to the low rank property of texture, the algorithm also uses the sparse assumption of the natural image: because the natural image is piecewise smooth, it is sparse in certain transformed domain (such as Fourier or wavelet transform). We combine low-rank and sparsity properties of the texture image together in the proposed algorithm. Our algorithm based on convex optimization can automatically and correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. This algorithm integrates texture rectification and repairing into one optimization problem. Through extensive simulations, we show our method can complete and repair textures corrupted by errors with both random and contiguous supports better than existing low-rank matrix recovery methods. Our method demonstrates significant advantage over local patch based texture synthesis techniques in dealing with large corruption, non-uniform texture, and large perspective deformation.
关键词low-rank texture convex optimization sparse error correction image repairing
收录类别SCI ; CPCI ; CSCD ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:000375932200009
CSCD记录号CSCD:5704980
出版者SCIENCE PRESS
EI入藏号20162202449396
EI主题词Algorithms ; Convex optimization ; Crime ; Error correction ; Optimization ; Random errors ; Repair ; Wavelet transforms
EI分类号Data Processing and Image Processing:723.2 ; Maintenance:913.5 ; Mathematical Transformations:921.3 ; Optimization Techniques:921.5 ; Social Sciences:971
WOS关键词IMAGE ; COMPLETION ; FRAMEWORK ; ALGORITHM
原始文献类型Article ; Proceedings Paper
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/1848
专题信息科学与技术学院
信息科学与技术学院_PI研究组_马毅组
通讯作者Liang, Xiao; Ren, Xiang; Zhang, Zhengdong; Ma, Yi
作者单位
1.Tsinghua Univ, Inst Adv Study, Beijing 100086, Peoples R China
2.Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
3.MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 200031, Peoples R China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liang, Xiao,Ren, Xiang,Zhang, Zhengdong,et al. Texture Repairing by Unified Low Rank Optimization[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2016,31(3):525-546.
APA Liang, Xiao,Ren, Xiang,Zhang, Zhengdong,&Ma, Yi.(2016).Texture Repairing by Unified Low Rank Optimization.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,31(3),525-546.
MLA Liang, Xiao,et al."Texture Repairing by Unified Low Rank Optimization".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 31.3(2016):525-546.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Xiao]的文章
[Ren, Xiang]的文章
[Zhang, Zhengdong]的文章
百度学术
百度学术中相似的文章
[Liang, Xiao]的文章
[Ren, Xiang]的文章
[Zhang, Zhengdong]的文章
必应学术
必应学术中相似的文章
[Liang, Xiao]的文章
[Ren, Xiang]的文章
[Zhang, Zhengdong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1848.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。