GNeRF: GAN-based Neural Radiance Field without Posed Camera
2021-10-17
会议录名称IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
ISSN2380-7504
发表状态已发表
DOI10.1109/ICCV48922.2021.00629
摘要We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained popularity for remarkable realistic novel view synthesis. However, most of them heavily rely on accurate camera poses estimation, while few recent methods can only optimize the unknown camera poses in roughly forward-facing scenes with relatively short camera trajectories and require rough camera poses initialization. Differently, our GNeRF only utilizes randomly initialized poses for complex outside-in scenarios. We propose a novel two-phases end-to-end framework. The first phase takes the use of GANs into the new realm for optimizing coarse camera poses and radiance fields jointly, while the second phase refines them with additional photometric loss. We overcome local minima using a hybrid and iterative optimization scheme. Extensive experiments on a variety of synthetic and natural scenes demonstrate the effectiveness of GNeRF. More impressively, our approach outperforms the baselines favorably in those scenes with repeated patterns or even low textures that are regarded as extremely challenging before.
会议名称18th IEEE/CVF International Conference on Computer Vision (ICCV)
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点null,null,ELECTR NETWORK
会议日期OCT 11-17, 2021
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目NSFC[61976138,61977047] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183381
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_许岚组
通讯作者Meng, Quan
作者单位
1.ShanghaiTech University
2.UCSD
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Meng, Quan,Chen, Anpei,Luo, Haimin,et al. GNeRF: GAN-based Neural Radiance Field without Posed Camera[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Meng, Quan]的文章
[Chen, Anpei]的文章
[Luo, Haimin]的文章
百度学术
百度学术中相似的文章
[Meng, Quan]的文章
[Chen, Anpei]的文章
[Luo, Haimin]的文章
必应学术
必应学术中相似的文章
[Meng, Quan]的文章
[Chen, Anpei]的文章
[Luo, Haimin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。