ShanghaiTech University Knowledge Management System
GNeRF: GAN-based Neural Radiance Field without Posed Camera | |
2021-10-17 | |
会议录名称 | IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
![]() |
ISSN | 2380-7504 |
发表状态 | 已发表 |
DOI | 10.1109/ICCV48922.2021.00629 |
摘要 | We introduce GNeRF, a framework to marry Generative Adversarial Networks (GAN) with Neural Radiance Field (NeRF) reconstruction for the complex scenarios with unknown and even randomly initialized camera poses. Recent NeRF-based advances have gained popularity for remarkable realistic novel view synthesis. However, most of them heavily rely on accurate camera poses estimation, while few recent methods can only optimize the unknown camera poses in roughly forward-facing scenes with relatively short camera trajectories and require rough camera poses initialization. Differently, our GNeRF only utilizes randomly initialized poses for complex outside-in scenarios. We propose a novel two-phases end-to-end framework. The first phase takes the use of GANs into the new realm for optimizing coarse camera poses and radiance fields jointly, while the second phase refines them with additional photometric loss. We overcome local minima using a hybrid and iterative optimization scheme. Extensive experiments on a variety of synthetic and natural scenes demonstrate the effectiveness of GNeRF. More impressively, our approach outperforms the baselines favorably in those scenes with repeated patterns or even low textures that are regarded as extremely challenging before. |
会议名称 | 18th IEEE/CVF International Conference on Computer Vision (ICCV) |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | OCT 11-17, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | NSFC[61976138,61977047] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/183381 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_许岚组 |
通讯作者 | Meng, Quan |
作者单位 | 1.ShanghaiTech University 2.UCSD |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Meng, Quan,Chen, Anpei,Luo, Haimin,et al. GNeRF: GAN-based Neural Radiance Field without Posed Camera[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。