| |||||||
ShanghaiTech University Knowledge Management System
Automatic Onsets and Systolic Peaks Detection and Segmentation of Arterial Blood Pressure Waveforms using Fully Convolutional Neural Networks | |
2021 | |
会议录名称 | 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
![]() |
ISSN | 1557-170X |
发表状态 | 已发表 |
DOI | 10.1109/EMBC46164.2021.9630554 |
摘要 | Arterial blood pressure (ABP) waveform is a common physiological signal that contains a wealth of cardiovascular information. According to the cardiac cycle, the ABP waveform is divided into rapid ejection, systolic and diastolic phases. Therefore, the characteristic points of the arterial blood pressure waveform, i.e. their onsets, systolic peaks, represent the timing of the minimum and maximum pressures. It is important to detect these characteristic points accurately. Recently, many researchers have introduced some feature points detection methods, but the accuracy is not particularly high. In this paper, a deep learning method is proposed to achieve periodic segmentation and feature points detection of ABP signals using a one-dimensional U-Net network. The network can split the ABP signal into two parts and accurately detect the feature points. The method is validated on an ABP dataset of 126 people, 500 people each. Performances are good at different tolerance thresholds, with an average time difference of less than 1.5 ms. Finally, the method performs with 99.79% and 99.79% sensitivity, 99.99% and 99.94% positive predictivity, and 0.23% and 0.27% error rates for both onsets and systolic peaks at a tolerance threshold of 30 ms. To our knowledge, this is the first paper to use deep learning methods for the onsets and systolic peaks detections of ABP signals. |
会议名称 | 43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC) |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | NOV 01-05, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI ; CPCI |
语种 | 英语 |
资助项目 | Shanghai Municipal Science and Technology Commission[18dz1100600] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Biomedical ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000760910505065 |
出版者 | IEEE |
EI入藏号 | 978-1-7281-1179-7 |
EISSN | 1558-4615 |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/176072 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_特聘教授组_李昕欣组 |
通讯作者 | Li, Xinxin |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai, Peoples R China 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen, Jianzhong,Sun, Yi,Sun, Ke,et al. Automatic Onsets and Systolic Peaks Detection and Segmentation of Arterial Blood Pressure Waveforms using Fully Convolutional Neural Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Jianzhong]的文章 |
[Sun, Yi]的文章 |
[Sun, Ke]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Jianzhong]的文章 |
[Sun, Yi]的文章 |
[Sun, Ke]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Jianzhong]的文章 |
[Sun, Yi]的文章 |
[Sun, Ke]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。