消息
×
loading..
Automatic Onsets and Systolic Peaks Detection and Segmentation of Arterial Blood Pressure Waveforms using Fully Convolutional Neural Networks
2021
会议录名称2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
ISSN1557-170X
发表状态已发表
DOI10.1109/EMBC46164.2021.9630554
摘要

Arterial blood pressure (ABP) waveform is a common physiological signal that contains a wealth of cardiovascular information. According to the cardiac cycle, the ABP waveform is divided into rapid ejection, systolic and diastolic phases. Therefore, the characteristic points of the arterial blood pressure waveform, i.e. their onsets, systolic peaks, represent the timing of the minimum and maximum pressures. It is important to detect these characteristic points accurately. Recently, many researchers have introduced some feature points detection methods, but the accuracy is not particularly high. In this paper, a deep learning method is proposed to achieve periodic segmentation and feature points detection of ABP signals using a one-dimensional U-Net network. The network can split the ABP signal into two parts and accurately detect the feature points. The method is validated on an ABP dataset of 126 people, 500 people each. Performances are good at different tolerance thresholds, with an average time difference of less than 1.5 ms. Finally, the method performs with 99.79% and 99.79% sensitivity, 99.99% and 99.94% positive predictivity, and 0.23% and 0.27% error rates for both onsets and systolic peaks at a tolerance threshold of 30 ms. To our knowledge, this is the first paper to use deep learning methods for the onsets and systolic peaks detections of ABP signals.

会议名称43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC)
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点null,null,ELECTR NETWORK
会议日期NOV 01-05, 2021
URL查看原文
收录类别CPCI-S ; EI ; CPCI
语种英语
资助项目Shanghai Municipal Science and Technology Commission[18dz1100600]
WOS研究方向Engineering
WOS类目Engineering, Biomedical ; Engineering, Electrical & Electronic
WOS记录号WOS:000760910505065
出版者IEEE
EI入藏号978-1-7281-1179-7
EISSN1558-4615
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/176072
专题信息科学与技术学院_博士生
信息科学与技术学院_特聘教授组_李昕欣组
通讯作者Li, Xinxin
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chen, Jianzhong,Sun, Yi,Sun, Ke,et al. Automatic Onsets and Systolic Peaks Detection and Segmentation of Arterial Blood Pressure Waveforms using Fully Convolutional Neural Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Jianzhong]的文章
[Sun, Yi]的文章
[Sun, Ke]的文章
百度学术
百度学术中相似的文章
[Chen, Jianzhong]的文章
[Sun, Yi]的文章
[Sun, Ke]的文章
必应学术
必应学术中相似的文章
[Chen, Jianzhong]的文章
[Sun, Yi]的文章
[Sun, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。