Toward fully automated UED operation using two-stage machine learning model
2022-03-10
发表期刊SCIENTIFIC REPORTS (IF:3.8[JCR-2023],4.3[5-Year])
ISSN2045-2322
EISSN2045-2322
卷号12期号:1
发表状态已发表
DOI10.1038/s41598-022-08260-7
摘要To demonstrate the feasibility of automating UED operation and diagnosing the machine performance in real time, a two-stage machine learning (ML) model based on self-consistent start-to-end simulations has been implemented. This model will not only provide the machine parameters with adequate precision, toward the full automation of the UED instrument, but also make real-time electron beam information available as single-shot nondestructive diagnostics. Furthermore, based on a deep understanding of the root connection between the electron beam properties and the features of Bragg-diffraction patterns, we have applied the hidden symmetry as model constraints, successfully improving the accuracy of energy spread prediction by a factor of five and making the beam divergence prediction two times faster. The capability enabled by the global optimization via ML provides us with better opportunities for discoveries using near-parallel, bright, and ultrafast electron beams for single-shot imaging. It also enables directly visualizing the dynamics of defects and nanostructured materials, which is impossible using present electron-beam technologies.
URL查看原文
收录类别SCIE ; SCI
语种英语
资助项目U.S. Department of Energy["DE-AC02-76SF00515","DE-SC0012704"] ; Brookhaven National Laboratory Directed Research and Development Program["16-010","19-016","22-029"] ; National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory[DE-AC02-05CH11231]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000838209800024
出版者NATURE PORTFOLIO
Scopus 记录号2-s2.0-85126222669
来源库Scopus
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/165037
专题物质科学与技术学院_外聘教师
通讯作者Yang, Xi
作者单位
1.SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
2.Brookhaven Natl Lab, Natl Synchrotron Light Source II, Upton, NY 11973 USA
3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
4.Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
推荐引用方式
GB/T 7714
Zhang, Zhe,Yang, Xi,Huang, Xiaobiao,et al. Toward fully automated UED operation using two-stage machine learning model[J]. SCIENTIFIC REPORTS,2022,12(1).
APA Zhang, Zhe.,Yang, Xi.,Huang, Xiaobiao.,Shaftan, Timur.,Smaluk, Victor.,...&Zhu, Yimei.(2022).Toward fully automated UED operation using two-stage machine learning model.SCIENTIFIC REPORTS,12(1).
MLA Zhang, Zhe,et al."Toward fully automated UED operation using two-stage machine learning model".SCIENTIFIC REPORTS 12.1(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhe]的文章
[Yang, Xi]的文章
[Huang, Xiaobiao]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhe]的文章
[Yang, Xi]的文章
[Huang, Xiaobiao]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhe]的文章
[Yang, Xi]的文章
[Huang, Xiaobiao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1038@s41598-022-08260-7.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。