Deep Free-Form Deformation Network for Object-Mask Registration
2017
会议录名称2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
ISSN2380-7504
卷号2017-October
页码4261-4269
发表状态已发表
DOI10.1109/ICCV.2017.456
摘要This paper addresses the problem of object-mask registration, which aligns a shape mask to a target object instance. Prior work typically formulate the problem as an object segmentation task with mask prior, which is challenging to solve. In this work, we take a transformation based approach that predicts a 2D non-rigid spatial transform and warps the shape mask onto the target object. In particular, we propose a deep spatial transformer network that learns free-form deformations (FFDs) to non-rigidly warp the shape mask based on a multi-level dual mask feature pooling strategy. The FFD transforms are based on B-splines and parameterized by the offsets of predefined control points, which are differentiable. Therefore, we are able to train the entire network in an end-to-end manner based on L2 matching loss. We evaluate our FFD network on a challenging object-mask alignment task, which aims to refine a set of object segment proposals, and our approach achieves the state-of-the-art performance on the Cityscapes, the PASCAL VOC and the MSCOCO datasets.
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Venice, Italy
会议日期22-29 Oct. 2017
URL查看原文
收录类别CPCI ; EI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000425498404035
出版者IEEE
EI入藏号20180704804209
EI主题词Deformation
EI分类号Computer Applications:723.5
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/16302
专题信息科学与技术学院_PI研究组_何旭明组
通讯作者Zhang, Haoyang
作者单位
1.Australian Natl Univ, Data61, CSIRO, Canberra, ACT, Australia
2.ShanghaiTech Univ, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Haoyang,He, Xuming. Deep Free-Form Deformation Network for Object-Mask Registration[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:4261-4269.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Haoyang]的文章
[He, Xuming]的文章
百度学术
百度学术中相似的文章
[Zhang, Haoyang]的文章
[He, Xuming]的文章
必应学术
必应学术中相似的文章
[Zhang, Haoyang]的文章
[He, Xuming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: ds_iccv17.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。