| |||||||
ShanghaiTech University Knowledge Management System
SofGAN: A Portrait Image Generator with Dynamic Styling | |
2022-02 | |
发表期刊 | ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year]) |
ISSN | 0730-0301 |
EISSN | 1557-7368 |
卷号 | 41期号:1 |
发表状态 | 已发表 |
DOI | 10.1145/3470848 |
摘要 | Recently, Generative Adversarial Networks (GANs) have been widely used for portrait image generation. However, in the latent space learned by GANs, different attributes, such as pose, shape, and texture style, are generally entangled, making the explicit control of specific attributes difficult. To address this issue, we propose a SofGAN image generator to decouple the latent space of portraits into two subspaces: a geometry space and a texture space. The latent codes sampled from the two subspaces are fed to two network branches separately, one to generate the 3D geometry of portraits with canonical pose, and the other to generate textures. The aligned 3D geometries also come with semantic part segmentation, encoded as a semantic occupancy field (SOF). The SOF allows the rendering of consistent 2D semantic segmentation maps at arbitrary views, which are then fused with the generated texturemaps and stylized to a portrait photo using our semantic instance-wise module. Through extensive experiments, we show that our system can generate high-quality portrait images with independently controllable geometry and texture attributes. The method also generalizes well in various applications, such as appearance-consistent facial animation and dynamic styling. © 2022 Association for Computing Machinery. |
关键词 | 3D modeling Geometry Semantic Segmentation Semantics Textures 3D geometry 3D models 3d-modeling Image generations Image generators Images synthesis Portrait image Semantic parts Shape and textures Texture space |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | NSFC Programs[61976138,61977047] ; National Key Research and Development Program[2018YFB2100500] ; STCSM Program[2015F0203-000-06] ; SHMEC Program[2019-01-07-00-01-E00003] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | WOS:000753818200001 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20220811682831 |
EI主题词 | Generative adversarial networks |
EI分类号 | 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 921 Mathematics |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/157710 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 物质科学与技术学院_本科生 |
通讯作者 | Chen, Anpei |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, 1 HuanKe RD, Shanghai 201210, Peoples R China 2.Univ Calif San Diego, Dept Comp Sci & Engn, EBU3B Bldg Rm 4114,9500 Gilman Dr, La Jolla, CA 92093 USA |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen, Anpei,Liu, Ruiyang,Xie, Ling,et al. SofGAN: A Portrait Image Generator with Dynamic Styling[J]. ACM TRANSACTIONS ON GRAPHICS,2022,41(1). |
APA | Chen, Anpei,Liu, Ruiyang,Xie, Ling,Chen, Zhang,Su, Hao,&Yu, Jingyi.(2022).SofGAN: A Portrait Image Generator with Dynamic Styling.ACM TRANSACTIONS ON GRAPHICS,41(1). |
MLA | Chen, Anpei,et al."SofGAN: A Portrait Image Generator with Dynamic Styling".ACM TRANSACTIONS ON GRAPHICS 41.1(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。