消息
×
loading..
SofGAN: A Portrait Image Generator with Dynamic Styling
2022-02
发表期刊ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year])
ISSN0730-0301
EISSN1557-7368
卷号41期号:1
发表状态已发表
DOI10.1145/3470848
摘要

Recently, Generative Adversarial Networks (GANs) have been widely used for portrait image generation. However, in the latent space learned by GANs, different attributes, such as pose, shape, and texture style, are generally entangled, making the explicit control of specific attributes difficult. To address this issue, we propose a SofGAN image generator to decouple the latent space of portraits into two subspaces: a geometry space and a texture space. The latent codes sampled from the two subspaces are fed to two network branches separately, one to generate the 3D geometry of portraits with canonical pose, and the other to generate textures. The aligned 3D geometries also come with semantic part segmentation, encoded as a semantic occupancy field (SOF). The SOF allows the rendering of consistent 2D semantic segmentation maps at arbitrary views, which are then fused with the generated texturemaps and stylized to a portrait photo using our semantic instance-wise module. Through extensive experiments, we show that our system can generate high-quality portrait images with independently controllable geometry and texture attributes. The method also generalizes well in various applications, such as appearance-consistent facial animation and dynamic styling. © 2022 Association for Computing Machinery.

关键词3D modeling Geometry Semantic Segmentation Semantics Textures 3D geometry 3D models 3d-modeling Image generations Image generators Images synthesis Portrait image Semantic parts Shape and textures Texture space
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目NSFC Programs[61976138,61977047] ; National Key Research and Development Program[2018YFB2100500] ; STCSM Program[2015F0203-000-06] ; SHMEC Program[2019-01-07-00-01-E00003]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000753818200001
出版者Association for Computing Machinery
EI入藏号20220811682831
EI主题词Generative adversarial networks
EI分类号723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 921 Mathematics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/157710
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
物质科学与技术学院_本科生
通讯作者Chen, Anpei
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, 1 HuanKe RD, Shanghai 201210, Peoples R China
2.Univ Calif San Diego, Dept Comp Sci & Engn, EBU3B Bldg Rm 4114,9500 Gilman Dr, La Jolla, CA 92093 USA
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chen, Anpei,Liu, Ruiyang,Xie, Ling,et al. SofGAN: A Portrait Image Generator with Dynamic Styling[J]. ACM TRANSACTIONS ON GRAPHICS,2022,41(1).
APA Chen, Anpei,Liu, Ruiyang,Xie, Ling,Chen, Zhang,Su, Hao,&Yu, Jingyi.(2022).SofGAN: A Portrait Image Generator with Dynamic Styling.ACM TRANSACTIONS ON GRAPHICS,41(1).
MLA Chen, Anpei,et al."SofGAN: A Portrait Image Generator with Dynamic Styling".ACM TRANSACTIONS ON GRAPHICS 41.1(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Anpei]的文章
[Liu, Ruiyang]的文章
[Xie, Ling]的文章
百度学术
百度学术中相似的文章
[Chen, Anpei]的文章
[Liu, Ruiyang]的文章
[Xie, Ling]的文章
必应学术
必应学术中相似的文章
[Chen, Anpei]的文章
[Liu, Ruiyang]的文章
[Xie, Ling]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3470848.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。