| |||||||
ShanghaiTech University Knowledge Management System
TightCap: 3D Human Shape Capture with Clothing Tightness Field | |
2022-02 | |
发表期刊 | ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year]) |
ISSN | 0730-0301 |
EISSN | 1557-7368 |
卷号 | 41期号:1 |
发表状态 | 已发表 |
DOI | 10.1145/3478518 |
摘要 | In this article, we present TightCap, a data-driven scheme to capture both the human shape and dressed garments accurately with only a single three-dimensional (3D) human scan, which enables numerous applications such as virtual try-on, biometrics, and body evaluation. To break the severe variations of the human poses and garments, we propose to model the clothing tightness field - the displacements from the garments to the human shape implicitly in the global UV texturing domain. To this end, we utilize an enhanced statistical human template and an effective multi-stage alignment scheme to map the 3D scan into a hybrid 2D geometry image. Based on this 2D representation, we propose a novel framework to predict clothing tightness field via a novel tightness formulation, as well as an effective optimization scheme to further reconstruct multi-layer human shape and garments under various clothing categories and human postures. We further propose a new clothing tightness dataset of human scans with a large variety of clothing styles, poses, and corresponding ground-truth human shapes to stimulate further research. Extensive experiments demonstrate the effectiveness of our TightCap to achieve the high-quality human shape and dressed garments reconstruction, as well as the further applications for clothing segmentation, retargeting, and animation. © 2021 Association for Computing Machinery. |
关键词 | Large dataset Virtual reality Clothing Data driven Global UV Human modelling Human pose Human shape capture Human shapes Parametric human model Try-on Virtual try-on |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | National Key Research and Development Program[2018YFB2100500] ; NSFC[61976138,61977047] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | WOS:000753818200008 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20220811682837 |
EI主题词 | Image enhancement |
EI分类号 | 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/157707 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_许岚组 |
通讯作者 | Chen, Xin |
作者单位 | 1.ShanghaiTech Univ, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China 2.ShanghaiTech Univ, Shanghai, Peoples R China 3.Univ Chinese Acad Sci, Chinese Acad Sci, Beijing, Peoples R China 4.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Hangzhou, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chen, Xin,Pang, Anqi,Yang, Wei,et al. TightCap: 3D Human Shape Capture with Clothing Tightness Field[J]. ACM TRANSACTIONS ON GRAPHICS,2022,41(1). |
APA | Chen, Xin,Pang, Anqi,Yang, Wei,Wang, Peihao,Xu, Lan,&Yu, Jingyi.(2022).TightCap: 3D Human Shape Capture with Clothing Tightness Field.ACM TRANSACTIONS ON GRAPHICS,41(1). |
MLA | Chen, Xin,et al."TightCap: 3D Human Shape Capture with Clothing Tightness Field".ACM TRANSACTIONS ON GRAPHICS 41.1(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Xin]的文章 |
[Pang, Anqi]的文章 |
[Yang, Wei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Xin]的文章 |
[Pang, Anqi]的文章 |
[Yang, Wei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Xin]的文章 |
[Pang, Anqi]的文章 |
[Yang, Wei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。