| |||||||
ShanghaiTech University Knowledge Management System
Complex-derived Fe2N Anchored on Conductive Few-layer Graphene for Electrocatalytic Oxygen Reduction Reaction | |
2022-03 | |
发表期刊 | CHEMNANOMAT (IF:2.6[JCR-2023],2.9[5-Year]) |
ISSN | 2199-692X |
EISSN | 2199-692X |
发表状态 | 已发表 |
DOI | 10.1002/cnma.202100531 |
摘要 | Constructing highly active sites and simultaneously electrically conductive pathways is necessary to establish rapid oxygen reduced reaction (ORR) kinetics. Herein, hexamethylene tetramine as the bidentate ligand is utilized to chelate Fe ion and provide carbon and nitrogen source. During pyrolysis, Fe catalyzes the growth of N-doped few-layer graphene so that Fe2N nanoparticles are anchored on conductive framework due to strong Fe−N interaction. Benefiting from above merits, the Fe2N@NGs catalyst achieves a half-potential of 0.84 V (vs. RHE), long-term stability and robustness to methanol crossover effect compared to the Pt/C catalyst. Thus, synergistically combining ligand-metal framework and transition metal-catalyzed graphitization gives new insight into engineering transition-metal/heteroatom-doped-graphene hybrid catalysts. © 2022 Wiley-VCH GmbH |
关键词 | Catalysis Catalysts Doping (additives) Electrolytic reduction Graphene Iron Iron compounds Nitrogen Nitrogen compounds Reaction kinetics Active site Bidentate ligands Carbon and nitrogen Electrically conductive Electrocatalytic oxygen reduction Fe-ions Few-layer graphene Hexamethylene tetramines Nitrogen doped graphene Oxygen reduction reaction |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[51922103] ; Shanghai Science and Technology Innovation Action Plan[20dz1204400] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
WOS类目 | Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:000753470200001 |
出版者 | John Wiley and Sons Inc |
EI入藏号 | 20220711647163 |
EI主题词 | Ligands |
EI分类号 | 533.1 Ore Treatment ; 545.1 Iron ; 761 Nanotechnology ; 801.4 Physical Chemistry ; 802.2 Chemical Reactions ; 803 Chemical Agents and Basic Industrial Chemicals ; 804 Chemical Products Generally |
原始文献类型 | Article in Press |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/155890 |
专题 | 物质科学与技术学院_硕士生 物质科学与技术学院_特聘教授组_黄富强组 物质科学与技术学院_博士生 |
通讯作者 | Huang, Fuqiang |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China 2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China 3.Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China 4.Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Shaoning,Dong, Chenlong,Wan, Zengming,et al. Complex-derived Fe2N Anchored on Conductive Few-layer Graphene for Electrocatalytic Oxygen Reduction Reaction[J]. CHEMNANOMAT,2022. |
APA | Zhang, Shaoning,Dong, Chenlong,Wan, Zengming,&Huang, Fuqiang.(2022).Complex-derived Fe2N Anchored on Conductive Few-layer Graphene for Electrocatalytic Oxygen Reduction Reaction.CHEMNANOMAT. |
MLA | Zhang, Shaoning,et al."Complex-derived Fe2N Anchored on Conductive Few-layer Graphene for Electrocatalytic Oxygen Reduction Reaction".CHEMNANOMAT (2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。