消息
×
loading..
COVIDSum: A linguistically enriched SciBERT-based summarization model for COVID-19 scientific papers
2022-03
发表期刊JOURNAL OF BIOMEDICAL INFORMATICS (IF:4.0[JCR-2023],7.4[5-Year])
ISSN1532-0464
EISSN1532-0480
卷号127
发表状态已发表
DOI10.1016/j.jbi.2022.103999
摘要

The coronavirus disease (COVID-19) has claimed the lives of over 350,000 people and infected more than 173 million people worldwide, it triggers researchers from diverse fields are accelerating their research to help diagnostics, therapies, and vaccines. Researchers also publish their recent research progress through scientific papers. However, manually writing the abstract of a paper is time-consuming, and it increases the writing burden of the researchers. Abstractive summarization technique which automatically provides researchers reliable draft abstracts, can alleviate this problem. In this work, we propose a linguistically enriched SciBERT-based summarization model for COVID-19 scientific papers, named COVIDSum. Specifically, we first extract salient sentences from source papers and construct word co-occurrence graphs. Then, we adopt a SciBERT-based sequence encoder and a Graph Attention Networks-based graph encoder to encode sentences and word co-occurrence graphs, respectively. Finally, we fuse the above two encodings and generate an abstractive summary of each scientific paper. When evaluated on the publicly available COVID-19 open research dataset, the performance of our proposed model achieves significant improvement compared with other document summarization models. © 2022 Elsevier Inc.

关键词Abstracting Coronavirus Diagnosis Disease control Linguistics Signal encoding Abstractive summarization Co-occurrence Graph Coronaviruses COVID-19 scientific paper Language model Linguistically enriched pre-trained language model SciBERT Scientific papers Summarization models Word co-occurrence
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目National Key Research and Development Project of China[2018YFB1402604] ; National Natural Science Foundation of China[61872296,61772429,
WOS研究方向Computer Science ; Medical Informatics
WOS类目Computer Science, Interdisciplinary Applications ; Medical Informatics
WOS记录号WOS:000772252000002
出版者Academic Press Inc.
EI入藏号20220511582318
EI主题词Encoding (symbols)
EI分类号461.6 Medicine and Pharmacology ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 903.1 Information Sources and Analysis
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153597
专题生物医学工程学院_PI研究组_沈定刚组
通讯作者Cai, Xiaoyan
作者单位
1.Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
2.Xidian Grp Hosp, Dept Cardiovasc Dis, Xian 710077, Shanxi, Peoples R China
3.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
4.Univ Georgia, Dept Comp Sci, Cort Architecture Imaging & Discovery Lab, Athens, GA USA
5.Univ Georgia, Bioimaging Res Ctr, Athens, GA USA
推荐引用方式
GB/T 7714
Cai, Xiaoyan,Liu, Sen,Yang, Libin,et al. COVIDSum: A linguistically enriched SciBERT-based summarization model for COVID-19 scientific papers[J]. JOURNAL OF BIOMEDICAL INFORMATICS,2022,127.
APA Cai, Xiaoyan.,Liu, Sen.,Yang, Libin.,Lu, Yan.,Zhao, Jintao.,...&Liu, Tianming.(2022).COVIDSum: A linguistically enriched SciBERT-based summarization model for COVID-19 scientific papers.JOURNAL OF BIOMEDICAL INFORMATICS,127.
MLA Cai, Xiaoyan,et al."COVIDSum: A linguistically enriched SciBERT-based summarization model for COVID-19 scientific papers".JOURNAL OF BIOMEDICAL INFORMATICS 127(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cai, Xiaoyan]的文章
[Liu, Sen]的文章
[Yang, Libin]的文章
百度学术
百度学术中相似的文章
[Cai, Xiaoyan]的文章
[Liu, Sen]的文章
[Yang, Libin]的文章
必应学术
必应学术中相似的文章
[Cai, Xiaoyan]的文章
[Liu, Sen]的文章
[Yang, Libin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。