Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild
2021
会议录名称2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021
ISSN1063-6919
发表状态已发表
DOI10.1109/CVPR46437.2021.01519
摘要This paper proposes a framework for the interactive video object segmentation (VOS) in the wild where users can choose some frames for annotations iteratively. Then, based on the user annotations, a segmentation algorithm refines the masks. The previous interactive VOS paradigm selects the frame with some worst evaluation metric, and the ground truth is required for calculating the evaluation metric, which is impractical in the testing phase. In contrast, in this paper, we advocate that the frame with the worst evaluation metric may not be exactly the most valuable frame that leads to the most performance improvement across the video. Thus, we formulate the frame selection problem in the interactive VOS as a Markov Decision Process, where an agent is learned to recommend the frame under a deep reinforcement learning framework. The learned agent can automatically determine the most valuable frame, making the interactive setting more practical in the wild. Experimental results on the public datasets show the effectiveness of our learned agent without any changes to the underlying VOS algorithms.
会议名称IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点null,null,ELECTR NETWORK
会议日期JUN 19-25, 2021
URL查看原文
收录类别CPCI-S ; EI ; CPCI
语种英语
资助项目Special Funds for the Construction of Innovative Provinces in Hunan[2019NK2022] ; NSFC[61672222,61932020] ; National Key R&D Program of China[2018AAA0100704] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000]
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000742075005065
出版者IEEE COMPUTER SOC
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153572
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
通讯作者Zhang, Hanling
作者单位
1.Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Peoples R China
2.Manycore, KooLab, Rancho Cordova, CA USA
3.Meituan Grp, Beijing, Peoples R China
4.ShanghaiTech Univ, Shanghai, Peoples R China
5.Hunan Univ, Sch Design, Changsha, Peoples R China
6.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Yin, Zhaoyuan,Zheng, Jia,Luo, Weixin,et al. Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yin, Zhaoyuan]的文章
[Zheng, Jia]的文章
[Luo, Weixin]的文章
百度学术
百度学术中相似的文章
[Yin, Zhaoyuan]的文章
[Zheng, Jia]的文章
[Luo, Weixin]的文章
必应学术
必应学术中相似的文章
[Yin, Zhaoyuan]的文章
[Zheng, Jia]的文章
[Luo, Weixin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR46437.2021.01519.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。