ShanghaiTech University Knowledge Management System
Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild | |
2021 | |
会议录名称 | 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR46437.2021.01519 |
摘要 | This paper proposes a framework for the interactive video object segmentation (VOS) in the wild where users can choose some frames for annotations iteratively. Then, based on the user annotations, a segmentation algorithm refines the masks. The previous interactive VOS paradigm selects the frame with some worst evaluation metric, and the ground truth is required for calculating the evaluation metric, which is impractical in the testing phase. In contrast, in this paper, we advocate that the frame with the worst evaluation metric may not be exactly the most valuable frame that leads to the most performance improvement across the video. Thus, we formulate the frame selection problem in the interactive VOS as a Markov Decision Process, where an agent is learned to recommend the frame under a deep reinforcement learning framework. The learned agent can automatically determine the most valuable frame, making the interactive setting more practical in the wild. Experimental results on the public datasets show the effectiveness of our learned agent without any changes to the underlying VOS algorithms. |
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | JUN 19-25, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI ; CPCI |
语种 | 英语 |
资助项目 | Special Funds for the Construction of Innovative Provinces in Hunan[2019NK2022] ; NSFC[61672222,61932020] ; National Key R&D Program of China[2018AAA0100704] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000742075005065 |
出版者 | IEEE COMPUTER SOC |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153572 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_高盛华组 |
通讯作者 | Zhang, Hanling |
作者单位 | 1.Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Peoples R China 2.Manycore, KooLab, Rancho Cordova, CA USA 3.Meituan Grp, Beijing, Peoples R China 4.ShanghaiTech Univ, Shanghai, Peoples R China 5.Hunan Univ, Sch Design, Changsha, Peoples R China 6.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Yin, Zhaoyuan,Zheng, Jia,Luo, Weixin,et al. Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。