| |||||||
ShanghaiTech University Knowledge Management System
Multi-instance learning of graph neural networks for aqueous pK(a) prediction | |
2022-02-01 | |
发表期刊 | BIOINFORMATICS (IF:4.4[JCR-2023],7.6[5-Year]) |
ISSN | 1367-4803 |
EISSN | 1460-2059 |
卷号 | 38期号:3 |
发表状态 | 已发表 |
DOI | 10.1093/bioinformatics/btab714 |
摘要 | ["Motivation: The acid dissociation constant (pK(a)) is a critical parameter to reflect the ionization ability of chemical compounds and is widely applied in a variety of industries. However, the experimental determination of pK(a) is intricate and time-consuming, especially for the exact determination of micro-pK(a) information at the atomic level. Hence, a fast and accurate prediction of pK(a) values of chemical compounds is of broad interest.","Results: Here, we compiled a large-scale pK(a) dataset containing 16 595 compounds with 17 489 pK(a) values. Based on this dataset, a novel pK(a) prediction model, named Graph-pK(a), was established using graph neural networks. Graph-pK(a) performed well on the prediction of macro-pK(a) values, with a mean absolute error around 0.55 and a coefficient of determination around 0.92 on the test dataset. Furthermore, combining multi-instance learning, Graph-pK(a) was also able to automatically deconvolute the predicted macro-pK(a) into discrete micro-pK(a) values."] |
URL | 查看原文 |
收录类别 | SCI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[81773634] ; Tencent AI Lab Rhino-Bird Focused Research Program[JR202002] |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics |
WOS类目 | Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability |
WOS记录号 | WOS:000743386000024 |
出版者 | OXFORD UNIV PRESS |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153558 |
专题 | 生命科学与技术学院_博士生 免疫化学研究所_特聘教授组_蒋华良组 |
通讯作者 | Jiang, Hualiang; Zheng, Mingyue |
作者单位 | 1.Chinese Acad Sci, Drug Discovery & Design Ctr, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China 2.Univ Chinese Acad Sci, Coll Pharm, Beijing 100049, Peoples R China 3.Suzhou Alphama Biotechnol Co Ltd, Dev Dept, Suzhou 215000, Peoples R China 4.Dezhou Univ, Coll Comp & Informat Engn, Dezhou City 253023, Peoples R China 5.Tencent, Tencent AI Lab, Shenzhen 518057, Peoples R China 6.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 200031, Peoples R China 7.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200031, Peoples R China |
通讯作者单位 | 免疫化学研究所; 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Xiong, Jiacheng,Li, Zhaojun,Wang, Guangchao,et al. Multi-instance learning of graph neural networks for aqueous pK(a) prediction[J]. BIOINFORMATICS,2022,38(3). |
APA | Xiong, Jiacheng.,Li, Zhaojun.,Wang, Guangchao.,Fu, Zunyun.,Zhong, Feisheng.,...&Zheng, Mingyue.(2022).Multi-instance learning of graph neural networks for aqueous pK(a) prediction.BIOINFORMATICS,38(3). |
MLA | Xiong, Jiacheng,et al."Multi-instance learning of graph neural networks for aqueous pK(a) prediction".BIOINFORMATICS 38.3(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。