消息
×
loading..
Multi-instance learning of graph neural networks for aqueous pK(a) prediction
2022-02-01
发表期刊BIOINFORMATICS (IF:4.4[JCR-2023],7.6[5-Year])
ISSN1367-4803
EISSN1460-2059
卷号38期号:3
发表状态已发表
DOI10.1093/bioinformatics/btab714
摘要["Motivation: The acid dissociation constant (pK(a)) is a critical parameter to reflect the ionization ability of chemical compounds and is widely applied in a variety of industries. However, the experimental determination of pK(a) is intricate and time-consuming, especially for the exact determination of micro-pK(a) information at the atomic level. Hence, a fast and accurate prediction of pK(a) values of chemical compounds is of broad interest.","Results: Here, we compiled a large-scale pK(a) dataset containing 16 595 compounds with 17 489 pK(a) values. Based on this dataset, a novel pK(a) prediction model, named Graph-pK(a), was established using graph neural networks. Graph-pK(a) performed well on the prediction of macro-pK(a) values, with a mean absolute error around 0.55 and a coefficient of determination around 0.92 on the test dataset. Furthermore, combining multi-instance learning, Graph-pK(a) was also able to automatically deconvolute the predicted macro-pK(a) into discrete micro-pK(a) values."]
URL查看原文
收录类别SCI ; SCIE
语种英语
资助项目National Natural Science Foundation of China[81773634] ; Tencent AI Lab Rhino-Bird Focused Research Program[JR202002]
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:000743386000024
出版者OXFORD UNIV PRESS
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/153558
专题生命科学与技术学院_博士生
免疫化学研究所_特聘教授组_蒋华良组
通讯作者Jiang, Hualiang; Zheng, Mingyue
作者单位
1.Chinese Acad Sci, Drug Discovery & Design Ctr, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai 201203, Peoples R China
2.Univ Chinese Acad Sci, Coll Pharm, Beijing 100049, Peoples R China
3.Suzhou Alphama Biotechnol Co Ltd, Dev Dept, Suzhou 215000, Peoples R China
4.Dezhou Univ, Coll Comp & Informat Engn, Dezhou City 253023, Peoples R China
5.Tencent, Tencent AI Lab, Shenzhen 518057, Peoples R China
6.ShanghaiTech Univ, Shanghai Inst Adv Immunochem Studies, Shanghai 200031, Peoples R China
7.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200031, Peoples R China
通讯作者单位免疫化学研究所;  生命科学与技术学院
推荐引用方式
GB/T 7714
Xiong, Jiacheng,Li, Zhaojun,Wang, Guangchao,et al. Multi-instance learning of graph neural networks for aqueous pK(a) prediction[J]. BIOINFORMATICS,2022,38(3).
APA Xiong, Jiacheng.,Li, Zhaojun.,Wang, Guangchao.,Fu, Zunyun.,Zhong, Feisheng.,...&Zheng, Mingyue.(2022).Multi-instance learning of graph neural networks for aqueous pK(a) prediction.BIOINFORMATICS,38(3).
MLA Xiong, Jiacheng,et al."Multi-instance learning of graph neural networks for aqueous pK(a) prediction".BIOINFORMATICS 38.3(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiong, Jiacheng]的文章
[Li, Zhaojun]的文章
[Wang, Guangchao]的文章
百度学术
百度学术中相似的文章
[Xiong, Jiacheng]的文章
[Li, Zhaojun]的文章
[Wang, Guangchao]的文章
必应学术
必应学术中相似的文章
[Xiong, Jiacheng]的文章
[Li, Zhaojun]的文章
[Wang, Guangchao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1093@bioinformatics@btab714.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。