ShanghaiTech University Knowledge Management System
Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection | |
2017-03 | |
发表期刊 | IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (IF:2.7[JCR-2023],2.9[5-Year]) |
ISSN | 0278-0070 |
卷号 | 36期号:3页码:421-434 |
发表状态 | 已发表 |
DOI | 10.1109/TCAD.2016.2611502 |
摘要 | Power supply fluctuation can be potential threat to the correct operations of processors, in the form of voltage emer-gency that happens when supply voltage drops below a certain threshold. Noise sensors (with either analog or digital outputs) can be placed in the nonfunction area of processors to detect voltage emergencies by monitoring the runtime voltage fluc-tuations. Our work addresses two important problems related to building a sensor-based voltage emergency detection system: 1) offline sensor placement, i. e., where to place the noise sen-sors so that the number and locations of sensors are optimized in order to strike a balance between design cost and chip reli-ability and 2) online voltage emergency detection, i. e., how to use these placed sensors to detect voltage emergencies in the hotspot locations. In this paper, we propose integrated solutions to these two problems, respectively, for analog and digital (more specifically, binary) sensor outputs, by exploiting the voltage cor-relation between the sensor candidate locations and the hotspot locations. For the analog case, we use the Group Lasso and an ordinary least squares approach; for the binary case, we integrate the Group Lasso and the SVM approach. Experimental results show that, our approach can achieve 2.3X-2.7X better voltage emergency detection results on average for analog out-puts when compared to the state-of-the-art work; and for the binary case, on average our methodology can achieve up to 21% improvement in prediction accuracy compared to an approach called max-probability-no-prediction. |
关键词 | Group Lasso linear support vector machine (LSVM) machine learning noise sensor sensor placement voltage emergency |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000395876400006 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20173404055657 |
EI主题词 | Artificial intelligence ; Bins ; Location ; Support vector machines ; Voltage control |
EI分类号 | Storage:694.4 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Specific Variables Control:731.3 |
WOS关键词 | REGRESSION ; MODEL ; MANAGEMENT ; FRAMEWORK ; SELECTION |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/1489 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周平强组 信息科学与技术学院_硕士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.ECE Department, Carnegie Mellon University, Pittsburgh, PA, USA 3.IBM T. J. Watson Research Center, Yorktown Heights, NY, USA |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xiaochen Liu,Shupeng Sun,Xin Li,et al. Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2017,36(3):421-434. |
APA | Xiaochen Liu,Shupeng Sun,Xin Li,Haifeng Qian,&Pingqiang Zhou.(2017).Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,36(3),421-434. |
MLA | Xiaochen Liu,et al."Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 36.3(2017):421-434. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xiaochen Liu]的文章 |
[Shupeng Sun]的文章 |
[Xin Li]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xiaochen Liu]的文章 |
[Shupeng Sun]的文章 |
[Xin Li]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xiaochen Liu]的文章 |
[Shupeng Sun]的文章 |
[Xin Li]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。