Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection
2017-03
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (IF:2.7[JCR-2023],2.9[5-Year])
ISSN0278-0070
卷号36期号:3页码:421-434
发表状态已发表
DOI10.1109/TCAD.2016.2611502
摘要Power supply fluctuation can be potential threat to the correct operations of processors, in the form of voltage emer-gency that happens when supply voltage drops below a certain threshold. Noise sensors (with either analog or digital outputs) can be placed in the nonfunction area of processors to detect voltage emergencies by monitoring the runtime voltage fluc-tuations. Our work addresses two important problems related to building a sensor-based voltage emergency detection system: 1) offline sensor placement, i. e., where to place the noise sen-sors so that the number and locations of sensors are optimized in order to strike a balance between design cost and chip reli-ability and 2) online voltage emergency detection, i. e., how to use these placed sensors to detect voltage emergencies in the hotspot locations. In this paper, we propose integrated solutions to these two problems, respectively, for analog and digital (more specifically, binary) sensor outputs, by exploiting the voltage cor-relation between the sensor candidate locations and the hotspot locations. For the analog case, we use the Group Lasso and an ordinary least squares approach; for the binary case, we integrate the Group Lasso and the SVM approach. Experimental results show that, our approach can achieve 2.3X-2.7X better voltage emergency detection results on average for analog out-puts when compared to the state-of-the-art work; and for the binary case, on average our methodology can achieve up to 21% improvement in prediction accuracy compared to an approach called max-probability-no-prediction.
关键词Group Lasso linear support vector machine (LSVM) machine learning noise sensor sensor placement voltage emergency
URL查看原文
收录类别SCI ; EI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:000395876400006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20173404055657
EI主题词Artificial intelligence ; Bins ; Location ; Support vector machines ; Voltage control
EI分类号Storage:694.4 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Specific Variables Control:731.3
WOS关键词REGRESSION ; MODEL ; MANAGEMENT ; FRAMEWORK ; SELECTION
原始文献类型Article
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/1489
专题信息科学与技术学院
信息科学与技术学院_PI研究组_周平强组
信息科学与技术学院_硕士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.ECE Department, Carnegie Mellon University, Pittsburgh, PA, USA
3.IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xiaochen Liu,Shupeng Sun,Xin Li,et al. Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2017,36(3):421-434.
APA Xiaochen Liu,Shupeng Sun,Xin Li,Haifeng Qian,&Pingqiang Zhou.(2017).Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,36(3),421-434.
MLA Xiaochen Liu,et al."Machine Learning for Noise Sensor Placement and Full-Chip Voltage Emergency Detection".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 36.3(2017):421-434.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiaochen Liu]的文章
[Shupeng Sun]的文章
[Xin Li]的文章
百度学术
百度学术中相似的文章
[Xiaochen Liu]的文章
[Shupeng Sun]的文章
[Xin Li]的文章
必应学术
必应学术中相似的文章
[Xiaochen Liu]的文章
[Shupeng Sun]的文章
[Xin Li]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TCAD2611502.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。