Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules
2021-12-01
发表期刊TRANSLATIONAL LUNG CANCER RESEARCH (IF:4.0[JCR-2023],4.3[5-Year])
ISSN2218-6751
EISSN2226-4477
发表状态已发表
DOI10.21037/tlcr-21-971
摘要Background: Clinical management of subsolid nodules (SSNs) is defined by the suspicion of tumor invasiveness. We sought to develop an artificial intelligent (AI) algorithm for invasiveness assessment of lung adenocarcinoma manifesting as radiological SSNs. We investigated the performance of this algorithm in classification of SSNs related to invasiveness. Methods: A retrospective chest computed tomography (CT) dataset of 1,589 SSNs was constructed to develop (85%) and internally test (15%) the proposed AI diagnostic tool, SSNet. Diagnostic performance was evaluated in the hold-out test set and was further tested in an external cohort of 102 SSNs. Three thoracic surgeons and three radiologists were required to evaluate the invasiveness of SSNs on both test datasets to investigate the clinical utility of the proposed SSNet. Results: In the differentiation of invasive adenocarcinoma (IA), SSNet achieved a similar area under the curve [AUC; 0.914, 95% confidence interval (CI): 0.813-0.987] with that of the 6 doctors (0.900, 95% CI: 0.867-0.922). When interpreting with the assistance of SSNet, the sensitivity of junior doctors, specificity of senior doctor, and their accuracy were significantly improved. In the external test, SSNet (AUC: 0.949, 95% CI: 0.884-1.000) achieved a better AUC than doctors (AUC: 0.883, 95% CI: 0.826-0.939) whose AUC increased (AUC: 0.908: 95% CI: 0.847-0.982) with SSNet assistance. In the histological subtype classifications, SSNet achieved better performance than practicing doctors. The AUCs of doctors were significantly improved with the assistance of SSNet in both 4-category and 3-category classifications to 0.836 (95% CI: 0.811-0.862) and 0.852 (95% CI: 0.825-0.882), respectively. Conclusions: The AI diagnostic system achieved non-inferior performance to doctors, and will potentially improve diagnostic performance and efficiency in SSN evaluation.
关键词Artificial intelligence (AI) pulmonary subsolid nodules (SSNs) lung adenocarcinoma computed tomography (CT)
URL查看原文
收录类别SCI ; SCIE
语种英语
资助项目National Natural Science Foundation of China[8210071009] ; Shanghai Science and Technology Commission[21YF1438200] ; Shanghai Municipal Health Commission[2019SY072] ; Science-Technology Foundation for Young Scientists of Gansu Province["18JR3RA305","21JR1RA107"] ; Natural Science Foundation of Gansu Province["21JR1RA118","21JR1RA092"]
WOS研究方向Oncology ; Respiratory System
WOS类目Oncology ; Respiratory System
WOS记录号WOS:000738997700001
出版者AME PUBL CO
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/148749
专题信息科学与技术学院_本科生
生物医学工程学院
通讯作者Jin, Feng; Yu, Bentong; Zhao, Guofang; Chen, Chang
作者单位
1.Tongji Univ, Dept Thorac Surg, Shanghai Pulm Hosp, Sch Med, 507 Zhengmin Rd, Shanghai 200433, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Lanzhou Univ, Hosp 1, Dept Thorac Surg, Lanzhou, Peoples R China
4.Nantong 6 Peoples Hosp, Dept Thorac Surg, Nantong, Peoples R China
5.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China
6.Shandong Publ Hlth Clin Ctr, Dept Thorac Surg, Jinan, Peoples R China
7.Tongji Univ, Shanghai Pulm Hosp, Dept Radiol, Sch Med, Shanghai, Peoples R China
8.Tongji Univ, Shanghai Pulm Hosp, Dept Pathol, Sch Med, Shanghai, Peoples R China
9.Tailai Biosci Inc, Shenzhen, Peoples R China
10.Dianei Technol, Shanghai, Peoples R China
11.Mayo Clin, Dept Radiol, Rochester, MN USA
12.Antwerp Univ Hosp, Dept Radiol, Edegem, Belgium
13.Univ Antwerp, Edegem, Belgium
14.Univ Antwerp, Fac Med & Hlth Sci, Antwerp, Belgium
15.Shandong Univ, Shandong Prov Chest Hosp, Cheeloo Coll Med, Prov Key Lab Resp Infect Dis Shandong, 46 Lishan Rd, Jinan 250013, Peoples R China
16.Nanchang Univ, Affiliated Hosp 1, Dept Thorac Surg, 17 Yongwaizheng St, Nanchang 330006, Jiangxi, Peoples R China
17.Univ Chinese Acad Sci, Hwa Mei Hosp, Dept Cardiothorac Surg, 41 Xibei St, Ningbo 315000, Peoples R China
18.Univ Chinese Acad Sci, Ningbo Inst Life & Hlth Ind, Ningbo, Peoples R China
19.Int Sci & Technol Cooperat Base Dev & Applicat Ke, Lanzhou, Peoples R China
推荐引用方式
GB/T 7714
Deng, Jiajun,Zhao, Mengmeng,Li, Qiuyuan,et al. Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules[J]. TRANSLATIONAL LUNG CANCER RESEARCH,2021.
APA Deng, Jiajun.,Zhao, Mengmeng.,Li, Qiuyuan.,Zhang, Yikai.,Ma, Minjie.,...&Chen, Chang.(2021).Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules.TRANSLATIONAL LUNG CANCER RESEARCH.
MLA Deng, Jiajun,et al."Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules".TRANSLATIONAL LUNG CANCER RESEARCH (2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Deng, Jiajun]的文章
[Zhao, Mengmeng]的文章
[Li, Qiuyuan]的文章
百度学术
百度学术中相似的文章
[Deng, Jiajun]的文章
[Zhao, Mengmeng]的文章
[Li, Qiuyuan]的文章
必应学术
必应学术中相似的文章
[Deng, Jiajun]的文章
[Zhao, Mengmeng]的文章
[Li, Qiuyuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.21037@tlcr-21-971.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。