ShanghaiTech University Knowledge Management System
Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network | |
2021-11 | |
会议录名称 | 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
![]() |
ISSN | 1557-170X |
发表状态 | 已发表 |
DOI | 10.1109/EMBC46164.2021.9630716 |
摘要 | Synthetic lethality (SL) is currently one of the most effective methods to identify new drugs for cancer treatment. It means that simultaneous inactivation target of two non-lethal genes will cause cell death, but loss of either will not. However, detecting SL pair is challenging due to the experimental costs. Artificial intelligence (AI) is a low-cost way to predict the potential SL relation between two genes. In this paper, a new Multi-Graph Ensemble (MGE) network structure combining graph neural network and existing knowledge about genes is proposed to predict SL pairs, which integrates the embedding of each feature with different neural networks to predict if a pair of genes have SL relation. It has a higher prediction performance compared with existing SL prediction methods. Also, with the integration of other biological knowledge, it has the potential of interpretability. |
会议名称 | 43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC) |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | NOV 01-05, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI ; CPCI |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Biomedical ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000760910501172 |
出版者 | IEEE |
EISSN | 1558-4615 |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135804 |
专题 | 信息科学与技术学院_硕士生 生命科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_郑杰组 信息科学与技术学院_PI研究组_江智浩组 |
通讯作者 | Min Wu |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China 2.School of Life Science and Technology, ShanghaiTech University, China 3.the Institute for Infocomm Research, A STAR, Singpore |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Mincai Lai,Guangyao Chen,Haochen Yang,et al. Predicting Synthetic Lethality in Human Cancers via Multi-Graph Ensemble Neural Network[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。