Radar-Based Human Activity Recognition With 1-D Dense Attention Network
2022
发表期刊IEEE GEOSCIENCE AND REMOTE SENSING LETTERS (IF:4.0[JCR-2023],4.4[5-Year])
ISSN1558-0571
卷号19
发表状态已发表
DOI10.1109/LGRS.2020.3045176
摘要With the development of the Internet of things, radar-based human activity recognition is becoming more and more important, because they play an indispensable role in fields such as safety and health monitoring. In this work, a novel network named 1-D dense attention neural network (1-D-DAN) is proposed for the radar-based human activity recognition. In the proposed network, a novel attention mechanism network structure specifically designed for radar spectrogram is proposed, equipping 1-D convolutional network with attention mechanism. With the $x$ -axis of the spectrogram represents time and the $y$ -axis represents frequency, the proposed attention mechanism includes two branches: 1) time attention branch and 2) frequency attention branch. Moreover, a dense attention operation that can make full use of features in the network is also introduced in the proposed attention mechanism. Experimental results show that compared with the state-of-the-art methods, our proposed 1-D-DAN achieves the highest accuracy in human activity recognition with the lowest computational complexity.
URL查看原文
收录类别SCI ; SCIE ; EI
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135724
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
作者单位
1.School of Electronic Science and Technology, Shenzhen University, Shenzhen, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Guoji Lai,Xin Lou,Wenbin Ye. Radar-Based Human Activity Recognition With 1-D Dense Attention Network[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2022,19.
APA Guoji Lai,Xin Lou,&Wenbin Ye.(2022).Radar-Based Human Activity Recognition With 1-D Dense Attention Network.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,19.
MLA Guoji Lai,et al."Radar-Based Human Activity Recognition With 1-D Dense Attention Network".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 19(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guoji Lai]的文章
[Xin Lou]的文章
[Wenbin Ye]的文章
百度学术
百度学术中相似的文章
[Guoji Lai]的文章
[Xin Lou]的文章
[Wenbin Ye]的文章
必应学术
必应学术中相似的文章
[Guoji Lai]的文章
[Xin Lou]的文章
[Wenbin Ye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。