Spherical DNNs and Their Applications in 360° Images and Videos
2022-10-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (IF:20.8[JCR-2023],22.2[5-Year])
ISSN0162-8828
EISSN1939-3539
卷号44期号:10
发表状态已发表
DOI10.1109/TPAMI.2021.3100259
摘要

Spherical images or videos, as typical non-Euclidean data, are usually stored in the form of 2D panoramas obtained through an equirectangular projection, which is neither equal area nor conformal. The distortion caused by the projection limits the performance of vanilla Deep Neural Networks (DNNs) designed for traditional Euclidean data. In this paper, we design a novel Spherical Deep Neural Network (DNN) to deal with the distortion caused by the equirectangular projection. Specifically, we customize a set of components, including a spherical convolution, a spherical pooling, a spherical ConvLSTM cell and a spherical MSE loss, as the replacements of their counterparts in vanilla DNNs for spherical data. The core idea is to change the identical behavior of the conventional operations in vanilla DNNs across different feature patches so that they will be adjusted to the distortion caused by the variance of sampling rate among different feature patches. We demonstrate the effectiveness of our Spherical DNNs for saliency detection and gaze estimation in $360^\circ$ videos. To facilitate the study of the 360 video saliency detection, we further construct a large-scale $360^\circ$ video saliency detection dataset. Comprehensive experiments validate the effectiveness of our proposed Spherical DNNs for spherical handwritten digit classification and sport classification, saliency detection and gaze tracking in $360^\circ$ videos. IEEE

关键词Character recognition Deep neural networks Eye tracking Large dataset Neural networks Gaze estimation Gaze tracking Handwritten digit classification Non-Euclidean Saliency detection Sampling rates Spherical images Video saliencies
URL查看原文
收录类别SCI ; EI ; SCIE
语种英语
资助项目National Key R&D Program of China[2018AAA0100704] ; NSFC[61932020] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000853875300095
出版者IEEE Computer Society
EI入藏号20213210745887
EI主题词Spheres
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135723
专题信息科学与技术学院_PI研究组_高盛华组
作者单位
1.Institute of High Performance Computing (IHPC), ASTAR, Singapore, Singapore
2.AI-Prime Co., Ltd, Shanghai, China
3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, and Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Yanyu Xu,Ziheng Zhang,Shenghua Gao. Spherical DNNs and Their Applications in 360° Images and Videos[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2022,44(10).
APA Yanyu Xu,Ziheng Zhang,&Shenghua Gao.(2022).Spherical DNNs and Their Applications in 360° Images and Videos.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,44(10).
MLA Yanyu Xu,et al."Spherical DNNs and Their Applications in 360° Images and Videos".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 44.10(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yanyu Xu]的文章
[Ziheng Zhang]的文章
[Shenghua Gao]的文章
百度学术
百度学术中相似的文章
[Yanyu Xu]的文章
[Ziheng Zhang]的文章
[Shenghua Gao]的文章
必应学术
必应学术中相似的文章
[Yanyu Xu]的文章
[Ziheng Zhang]的文章
[Shenghua Gao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。