ShanghaiTech University Knowledge Management System
Crowd Counting With Partial Annotations in an Image | |
2021-04 | |
会议录名称 | IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION |
ISSN | 1550-5499 |
页码 | 15550-15559 |
发表状态 | 已发表 |
DOI | 10.1109/ICCV48922.2021.01528 |
摘要 | To fully leverage the data captured from different scenes with different view angles while reducing the annotation cost, this paper studies a novel crowd counting setting, i.e. only using partial annotations in each image as training data. Inspired by the repetitive patterns in the annotated and unannotated regions as well as the ones between them, we design a network with three components to tackle those unannotated regions: i) in an Unannotated Regions Characterization (URC) module, we employ a memory bank to only store the annotated features, which could help the visual features extracted from these annotated regions flow to these unannotated regions; ii) For each image, Feature Distribution Consistency (FDC) regularizes the feature distributions of annotated head and unannotated head regions to be consistent; iii) a Cross-regressor Consistency Regularization (CCR) module is designed to learn the visual features of unannotated regions in a self-supervised style. The experimental results validate the effectiveness of our proposed model under the partial annotation setting for several datasets, such as ShanghaiTech, UCF-CC-50, UCFQNRF, NWPU-Crowd and JHU-CROWD++. With only 10% annotated regions in each image, our proposed model achieves better performance than the recent methods and baselines under semi-supervised or active learning settings on all datasets. The code is https://github.com/ svip-lab/CrwodCountingPAL. |
会议名称 | 18th IEEE/CVF International Conference on Computer Vision (ICCV) |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | OCT 11-17, 2021 |
URL | 查看原文 |
收录类别 | SCI ; EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2018AAA0100704] ; NSFC[61932020] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000798743205072 |
出版者 | IEEE |
EI入藏号 | 20221511950317 |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135662 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_博士生 |
共同第一作者 | Zhong, Ziming |
通讯作者 | Gao, Shenghua |
作者单位 | 1.ASTAR, IHPC, Singapore, Singapore 2.ShanghaiTech Univ, Shanghai, Peoples R China 3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China 4.Shanghai Engn Res Ctr Energy Efficient & Custom A, Shanghai, Peoples R China |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Yanyu,Zhong, Ziming,Lian, Dongze,et al. Crowd Counting With Partial Annotations in an Image[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:15550-15559. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。