Crowd Counting With Partial Annotations in an Image
2021-04
会议录名称IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION
ISSN1550-5499
页码15550-15559
发表状态已发表
DOI10.1109/ICCV48922.2021.01528
摘要

To fully leverage the data captured from different scenes with different view angles while reducing the annotation cost, this paper studies a novel crowd counting setting, i.e. only using partial annotations in each image as training data. Inspired by the repetitive patterns in the annotated and unannotated regions as well as the ones between them, we design a network with three components to tackle those unannotated regions: i) in an Unannotated Regions Characterization (URC) module, we employ a memory bank to only store the annotated features, which could help the visual features extracted from these annotated regions flow to these unannotated regions; ii) For each image, Feature Distribution Consistency (FDC) regularizes the feature distributions of annotated head and unannotated head regions to be consistent; iii) a Cross-regressor Consistency Regularization (CCR) module is designed to learn the visual features of unannotated regions in a self-supervised style. The experimental results validate the effectiveness of our proposed model under the partial annotation setting for several datasets, such as ShanghaiTech, UCF-CC-50, UCFQNRF, NWPU-Crowd and JHU-CROWD++. With only 10% annotated regions in each image, our proposed model achieves better performance than the recent methods and baselines under semi-supervised or active learning settings on all datasets. The code is https://github.com/ svip-lab/CrwodCountingPAL.

会议名称18th IEEE/CVF International Conference on Computer Vision (ICCV)
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点null,null,ELECTR NETWORK
会议日期OCT 11-17, 2021
URL查看原文
收录类别SCI ; EI ; CPCI ; CPCI-S
语种英语
资助项目National Key R&D Program of China[2018AAA0100704] ; NSFC[61932020] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:000798743205072
出版者IEEE
EI入藏号20221511950317
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135662
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
信息科学与技术学院_博士生
共同第一作者Zhong, Ziming
通讯作者Gao, Shenghua
作者单位
1.ASTAR, IHPC, Singapore, Singapore
2.ShanghaiTech Univ, Shanghai, Peoples R China
3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
4.Shanghai Engn Res Ctr Energy Efficient & Custom A, Shanghai, Peoples R China
通讯作者单位上海科技大学
推荐引用方式
GB/T 7714
Xu, Yanyu,Zhong, Ziming,Lian, Dongze,et al. Crowd Counting With Partial Annotations in an Image[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:15550-15559.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Yanyu]的文章
[Zhong, Ziming]的文章
[Lian, Dongze]的文章
百度学术
百度学术中相似的文章
[Xu, Yanyu]的文章
[Zhong, Ziming]的文章
[Lian, Dongze]的文章
必应学术
必应学术中相似的文章
[Xu, Yanyu]的文章
[Zhong, Ziming]的文章
[Lian, Dongze]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。