Compressed sensing for photoacoustic computed tomography based on an untrained neural network with shape prior
2021-12-01
发表期刊BIOMEDICAL OPTICS EXPRESS (IF:2.9[JCR-2023],3.2[5-Year])
ISSN2156-7085
卷号12期号:12
发表状态已发表
DOI10.1364/BOE.441901
摘要

Photoacoustic (PA) computed tomography (PACT) shows great potential in various preclinical and clinical applications. A great number of measurements are the premise that obtains a high-quality image, which implies a low imaging rate or a high system cost. The artifacts or sidelobes could pollute the image if we decrease the number of measured channels or limit the detected view. In this paper, a novel compressed sensing method for PACT using an untrained neural network is proposed, which decreases a half number of the measured channels and recovers enough details. This method uses a neural network to reconstruct without the requirement for any additional learning based on the deep image prior. The model can reconstruct the image only using a few detections with gradient descent. As an unlearned strategy, our method can cooperate with other existing regularization, and further improve the quality. In addition, we introduce a shape prior to easily converge the model to the image. We verify the feasibility of untrained network-based compressed sensing in PA image reconstruction and compare this method with a conventional method using total variation minimization. The experimental results show that our proposed method outperforms 32.72% (SSIM) with the traditional compressed sensing method in the same regularization. It could dramatically reduce the requirement for the number of transducers, by sparsely sampling the raw PA data, and improve the quality of PA image significantly. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

URL查看原文
收录类别SCI ; EI ; SCIE
语种英语
资助项目National Natural Science Foundation of China[61805139] ; United Imaging Intelligence[2019X0203-501-02]
WOS研究方向Biochemistry & Molecular Biology ; Optics ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Biochemical Research Methods ; Optics ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000726472000004
出版者OPTICAL SOC AMER
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/135625
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
通讯作者Gao, Fei
作者单位
1.ShanghaiTech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Sch Informat Sci & Technol, Hybrid Imaging Syst Lab, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Lan, Hengrong,Zhang, Juze,Yang, Changchun,et al. Compressed sensing for photoacoustic computed tomography based on an untrained neural network with shape prior[J]. BIOMEDICAL OPTICS EXPRESS,2021,12(12).
APA Lan, Hengrong,Zhang, Juze,Yang, Changchun,&Gao, Fei.(2021).Compressed sensing for photoacoustic computed tomography based on an untrained neural network with shape prior.BIOMEDICAL OPTICS EXPRESS,12(12).
MLA Lan, Hengrong,et al."Compressed sensing for photoacoustic computed tomography based on an untrained neural network with shape prior".BIOMEDICAL OPTICS EXPRESS 12.12(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lan, Hengrong]的文章
[Zhang, Juze]的文章
[Yang, Changchun]的文章
百度学术
百度学术中相似的文章
[Lan, Hengrong]的文章
[Zhang, Juze]的文章
[Yang, Changchun]的文章
必应学术
必应学术中相似的文章
[Lan, Hengrong]的文章
[Zhang, Juze]的文章
[Yang, Changchun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。