ShanghaiTech University Knowledge Management System
Curriculum learning of Bayesian network structures | |
2015 | |
会议录名称 | 7TH ASIAN CONFERENCE ON MACHINE LEARNING, ACML 2015 |
页码 | 269-284 |
发表状态 | 已发表 |
摘要 | Bayesian networks (BNs) are directed graphical models that have been widely used in various tasks for probabilistic reasoning and causal modeling. One major challenge in these tasks is to learn the BN structures from data. In this paper, we propose a novel heuristic algorithm for BN structure learning that takes advantage of the idea of curriculum learning. Our algorithm learns the BN structure by stages. At each stage a subnet is learned over a selected subset of the random variables conditioned on fixed values of the rest of the variables. The selected subset grows with stages and eventually includes all the variables. We prove theoretical advantages of our algorithm and also empirically show that it outperformed the state-of-the-art heuristic approach in learning BN structures. © 2015 Y. Zhao, Y. Chen, K. Tu & J. Tian. |
会议地点 | Hong Kong, Hong kong |
收录类别 | EI |
出版者 | Asian Conference on Machine Learning |
EI入藏号 | 20173104000161 |
EI主题词 | Artificial intelligence ; Bayesian networks ; Curricula ; Heuristic algorithms ; Heuristic methods ; Knowledge based systems ; Learning algorithms ; Learning systems |
EI分类号 | Computer Software, Data Handling and Applications:723 ; Education:901.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/13420 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_屠可伟组 信息科学与技术学院_硕士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of Computer Science, Iowa State University, Ames; IA, United States |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhao, Yanpeng,Chen, Yetian,Tu, Kewei,et al. Curriculum learning of Bayesian network structures[C]:Asian Conference on Machine Learning,2015:269-284. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。