ShanghaiTech University Knowledge Management System
Automated concatenation of embeddings for structured prediction | |
2021-07-01 | |
会议录名称 | ACL-IJCNLP 2021 - 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, PROCEEDINGS OF THE CONFERENCE |
页码 | 2643-2660 |
发表状态 | 已发表 |
DOI | / |
摘要 | Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations. © 2021 Association for Computational Linguistics |
会议录编者/会议主办者 | Amazon Science ; Apple ; Bloomberg Engineering ; et al. ; Facebook AI ; Google Research |
关键词 | Computational linguistics Forecasting Reinforcement learning 'current Embeddings Neural architectures Prediction tasks Recent progress State of the art performance Structured prediction Task modelling Task based Word representations |
会议名称 | Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021 |
会议地点 | Virtual, Online |
会议日期 | August 1, 2021 - August 6, 2021 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Linguistics |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Linguistics |
WOS记录号 | WOS:000698679200006 |
出版者 | Association for Computational Linguistics (ACL) |
EI入藏号 | 20214611160181 |
EI主题词 | Embeddings |
EI分类号 | 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.4 Artificial Intelligence |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133558 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_屠可伟组 |
通讯作者 | Jiang, Yong; Tu, Kewei |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.Shanghai Engineering Research Center of Intelligent Vision and Imaging Shanghai 3.Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 4.University of Chinese Academy of Sciences, China 5.DAMO Academy, Alibaba Group |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Xinyu,Jiang, Yong,Bach, Nguyen,et al. Automated concatenation of embeddings for structured prediction[C]//Amazon Science, Apple, Bloomberg Engineering, et al., Facebook AI, Google Research:Association for Computational Linguistics (ACL),2021:2643-2660. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。