Automated concatenation of embeddings for structured prediction
2021-07-01
会议录名称ACL-IJCNLP 2021 - 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, PROCEEDINGS OF THE CONFERENCE
页码2643-2660
发表状态已发表
DOI/
摘要

Pretrained contextualized embeddings are powerful word representations for structured prediction tasks. Recent work found that better word representations can be obtained by concatenating different types of embeddings. However, the selection of embeddings to form the best concatenated representation usually varies depending on the task and the collection of candidate embeddings, and the ever-increasing number of embedding types makes it a more difficult problem. In this paper, we propose Automated Concatenation of Embeddings (ACE) to automate the process of finding better concatenations of embeddings for structured prediction tasks, based on a formulation inspired by recent progress on neural architecture search. Specifically, a controller alternately samples a concatenation of embeddings, according to its current belief of the effectiveness of individual embedding types in consideration for a task, and updates the belief based on a reward. We follow strategies in reinforcement learning to optimize the parameters of the controller and compute the reward based on the accuracy of a task model, which is fed with the sampled concatenation as input and trained on a task dataset. Empirical results on 6 tasks and 21 datasets show that our approach outperforms strong baselines and achieves state-of-the-art performance with fine-tuned embeddings in all the evaluations. © 2021 Association for Computational Linguistics

会议录编者/会议主办者Amazon Science ; Apple ; Bloomberg Engineering ; et al. ; Facebook AI ; Google Research
关键词Computational linguistics Forecasting Reinforcement learning 'current Embeddings Neural architectures Prediction tasks Recent progress State of the art performance Structured prediction Task modelling Task based Word representations
会议名称Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
会议地点Virtual, Online
会议日期August 1, 2021 - August 6, 2021
收录类别EI ; CPCI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Linguistics
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Linguistics
WOS记录号WOS:000698679200006
出版者Association for Computational Linguistics (ACL)
EI入藏号20214611160181
EI主题词Embeddings
EI分类号721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.4 Artificial Intelligence
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133558
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_屠可伟组
通讯作者Jiang, Yong; Tu, Kewei
作者单位
1.School of Information Science and Technology, ShanghaiTech University
2.Shanghai Engineering Research Center of Intelligent Vision and Imaging Shanghai
3.Institute of Microsystem and Information Technology, Chinese Academy of Sciences,
4.University of Chinese Academy of Sciences, China
5.DAMO Academy, Alibaba Group
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, Xinyu,Jiang, Yong,Bach, Nguyen,et al. Automated concatenation of embeddings for structured prediction[C]//Amazon Science, Apple, Bloomberg Engineering, et al., Facebook AI, Google Research:Association for Computational Linguistics (ACL),2021:2643-2660.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Xinyu]的文章
[Jiang, Yong]的文章
[Bach, Nguyen]的文章
百度学术
百度学术中相似的文章
[Wang, Xinyu]的文章
[Jiang, Yong]的文章
[Bach, Nguyen]的文章
必应学术
必应学术中相似的文章
[Wang, Xinyu]的文章
[Jiang, Yong]的文章
[Bach, Nguyen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。