消息
×
loading..
Neural bi-lexicalized PCFG induction
2021-07-01
会议录名称ACL-IJCNLP 2021 - 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, PROCEEDINGS OF THE CONFERENCE
页码2688-2699
发表状态已发表
DOI10.48550/arXiv.2105.15021
摘要

Neural lexicalized PCFGs (L-PCFGs) (Zhu et al., 2020) have been shown effective in grammar induction. However, to reduce computational complexity, they make a strong independence assumption on the generation of the child word and thus bilexical dependencies are ignored. In this paper, we propose an approach to parameterize L-PCFGs without making implausible independence assumptions. Our approach directly models bilexical dependencies and meanwhile reduces both learning and representation complexities of L-PCFGs. Experimental results on the 英语 WSJ dataset confirm the effectiveness of our approach in improving both running speed and unsupervised parsing performance. © 2021 Association for Computational Linguistics

会议录编者/会议主办者Amazon Science ; Apple ; Bloomberg Engineering ; et al. ; Facebook AI ; Google Research
关键词Directly model Grammar induction Independence assumption Performance Running speed
会议名称Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
会议地点Virtual, Online
会议日期August 1, 2021 - August 6, 2021
收录类别EI ; CPCI ; CPCI-S
语种英语
出版者Association for Computational Linguistics (ACL)
EI入藏号20214611160184
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133553
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_屠可伟组
通讯作者Tu, Kewei
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China;
2.ILCC, University of Edinburgh, United Kingdom
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yang, Songlin,Zhao, Yanpeng,Tu, Kewei. Neural bi-lexicalized PCFG induction[C]//Amazon Science, Apple, Bloomberg Engineering, et al., Facebook AI, Google Research:Association for Computational Linguistics (ACL),2021:2688-2699.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Songlin]的文章
[Zhao, Yanpeng]的文章
[Tu, Kewei]的文章
百度学术
百度学术中相似的文章
[Yang, Songlin]的文章
[Zhao, Yanpeng]的文章
[Tu, Kewei]的文章
必应学术
必应学术中相似的文章
[Yang, Songlin]的文章
[Zhao, Yanpeng]的文章
[Tu, Kewei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。