| |||||||
ShanghaiTech University Knowledge Management System
Neural bi-lexicalized PCFG induction | |
2021-07-01 | |
会议录名称 | ACL-IJCNLP 2021 - 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, PROCEEDINGS OF THE CONFERENCE |
页码 | 2688-2699 |
发表状态 | 已发表 |
DOI | 10.48550/arXiv.2105.15021 |
摘要 | Neural lexicalized PCFGs (L-PCFGs) (Zhu et al., 2020) have been shown effective in grammar induction. However, to reduce computational complexity, they make a strong independence assumption on the generation of the child word and thus bilexical dependencies are ignored. In this paper, we propose an approach to parameterize L-PCFGs without making implausible independence assumptions. Our approach directly models bilexical dependencies and meanwhile reduces both learning and representation complexities of L-PCFGs. Experimental results on the 英语 WSJ dataset confirm the effectiveness of our approach in improving both running speed and unsupervised parsing performance. © 2021 Association for Computational Linguistics |
会议录编者/会议主办者 | Amazon Science ; Apple ; Bloomberg Engineering ; et al. ; Facebook AI ; Google Research |
关键词 | Directly model Grammar induction Independence assumption Performance Running speed |
会议名称 | Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021 |
会议地点 | Virtual, Online |
会议日期 | August 1, 2021 - August 6, 2021 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
出版者 | Association for Computational Linguistics (ACL) |
EI入藏号 | 20214611160184 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133553 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_屠可伟组 |
通讯作者 | Tu, Kewei |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, China; 2.ILCC, University of Edinburgh, United Kingdom |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yang, Songlin,Zhao, Yanpeng,Tu, Kewei. Neural bi-lexicalized PCFG induction[C]//Amazon Science, Apple, Bloomberg Engineering, et al., Facebook AI, Google Research:Association for Computational Linguistics (ACL),2021:2688-2699. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。