ShanghaiTech University Knowledge Management System
Retrospective Thinking based Multi-Agent System for Wireless Video Transmissions | |
2021-06-01 | |
会议录名称 | IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS |
ISSN | 1550-3607 |
发表状态 | 已发表 |
DOI | 10.1109/ICC42927.2021.9500274 |
摘要 | Benefiting from the breakthrough development of the fifth generation (5G), beyond 5G (B5G) wireless communication networks and Artificial Intelligence (AI) in recent years, the artificial intelligence of things (AIoT) is a new trend in the future. AIoT devices often have high-quality wireless video transmission requirements. However, the propagating signals at millimeter wave suffer from high propagation loss and sensitivity to blockage, resulting in the received video is vulnerable to be interfered. Due to the ability of Deep Learning (DL) to discover and learn good representations, some DL methods have achieved breakthrough performance in video recovery. However, most of these methods cannot exploit information from the higher to lower level to refine themselves. In this paper, we propose a novel retrospective thinking based multi-agent (ReTMA) system to solve the interference problem experienced on wireless channels. Compared with other plain feedback models, we add a retrospective agent on the feedback loop, which makes the entire system have stronger capabilities to learn good representative features. We further formulate it as a Stackelberg game to analyze the dependency relationship between the agents and facilitate the complex training issue of the multiple agents. To verify the feasibility of ReTMA system, we randomly add masks to simulate the severe interference received by the video frames in wireless transmissions. Experimental results show that the performances of similarity index measure (SSIM), peak signal-to-noise ratio (PSNR) and classification accuracy all achieve significant gains compared with those of other plain feedback models at different mask ratios. © 2021 IEEE. |
会议录编者/会议主办者 | IEEE Communications Society ; IEEE Montreal Section ; IEEE Ottawa Section |
关键词 | 5G mobile communication systems Deep learning Millimeter waves Multi agent systems Signal to noise ratio Feedback mechanisms Feedback model High quality Learn+ Multi agent Propagation loss Retrospective thinking Video transmissions Wireless communications networks Wireless video transmission |
会议名称 | 2021 IEEE International Conference on Communications, ICC 2021 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Virtual, Online, Canada |
会议日期 | June 14, 2021 - June 23, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Telecommunications |
WOS类目 | Telecommunications |
WOS记录号 | WOS:000719386000030 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20213910951154 |
EI主题词 | Image communication systems |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 711 Electromagnetic Waves ; 716.1 Information Theory and Signal Processing ; 716.3 Radio Systems and Equipment |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133536 |
专题 | 创意与艺术学院_特聘教授组_汪军组 信息科学与技术学院_PI研究组_杨旸组 创意与艺术学院 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Li, Yang |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Shanghai Jiao Tong Univ, Shanghai, Peoples R China 3.UCL, London, England 4.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China 5.Univ Chinese Acad Sci, Beijing, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Li, Yang,Sun, Fanglei,Song, Wenbin,et al. Retrospective Thinking based Multi-Agent System for Wireless Video Transmissions[C]//IEEE Communications Society, IEEE Montreal Section, IEEE Ottawa Section. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。