Retrospective Thinking based Multi-Agent System for Wireless Video Transmissions
2021-06-01
会议录名称IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS
ISSN1550-3607
发表状态已发表
DOI10.1109/ICC42927.2021.9500274
摘要

Benefiting from the breakthrough development of the fifth generation (5G), beyond 5G (B5G) wireless communication networks and Artificial Intelligence (AI) in recent years, the artificial intelligence of things (AIoT) is a new trend in the future. AIoT devices often have high-quality wireless video transmission requirements. However, the propagating signals at millimeter wave suffer from high propagation loss and sensitivity to blockage, resulting in the received video is vulnerable to be interfered. Due to the ability of Deep Learning (DL) to discover and learn good representations, some DL methods have achieved breakthrough performance in video recovery. However, most of these methods cannot exploit information from the higher to lower level to refine themselves. In this paper, we propose a novel retrospective thinking based multi-agent (ReTMA) system to solve the interference problem experienced on wireless channels. Compared with other plain feedback models, we add a retrospective agent on the feedback loop, which makes the entire system have stronger capabilities to learn good representative features. We further formulate it as a Stackelberg game to analyze the dependency relationship between the agents and facilitate the complex training issue of the multiple agents. To verify the feasibility of ReTMA system, we randomly add masks to simulate the severe interference received by the video frames in wireless transmissions. Experimental results show that the performances of similarity index measure (SSIM), peak signal-to-noise ratio (PSNR) and classification accuracy all achieve significant gains compared with those of other plain feedback models at different mask ratios. © 2021 IEEE.

会议录编者/会议主办者IEEE Communications Society ; IEEE Montreal Section ; IEEE Ottawa Section
关键词5G mobile communication systems Deep learning Millimeter waves Multi agent systems Signal to noise ratio Feedback mechanisms Feedback model High quality Learn+ Multi agent Propagation loss Retrospective thinking Video transmissions Wireless communications networks Wireless video transmission
会议名称2021 IEEE International Conference on Communications, ICC 2021
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Virtual, Online, Canada
会议日期June 14, 2021 - June 23, 2021
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
WOS研究方向Telecommunications
WOS类目Telecommunications
WOS记录号WOS:000719386000030
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20213910951154
EI主题词Image communication systems
EI分类号461.4 Ergonomics and Human Factors Engineering ; 711 Electromagnetic Waves ; 716.1 Information Theory and Signal Processing ; 716.3 Radio Systems and Equipment
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133536
专题创意与艺术学院_特聘教授组_汪军组
信息科学与技术学院_PI研究组_杨旸组
创意与艺术学院
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Li, Yang
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Shanghai Jiao Tong Univ, Shanghai, Peoples R China
3.UCL, London, England
4.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai, Peoples R China
5.Univ Chinese Acad Sci, Beijing, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Li, Yang,Sun, Fanglei,Song, Wenbin,et al. Retrospective Thinking based Multi-Agent System for Wireless Video Transmissions[C]//IEEE Communications Society, IEEE Montreal Section, IEEE Ottawa Section. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Yang]的文章
[Sun, Fanglei]的文章
[Song, Wenbin]的文章
百度学术
百度学术中相似的文章
[Li, Yang]的文章
[Sun, Fanglei]的文章
[Song, Wenbin]的文章
必应学术
必应学术中相似的文章
[Li, Yang]的文章
[Sun, Fanglei]的文章
[Song, Wenbin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。