ShanghaiTech University Knowledge Management System
IButter: Neural Interactive Bullet Time Generator for Human Free-viewpoint Rendering | |
2021-10-17 | |
会议录名称 | MM 2021 - PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA |
页码 | 4641-4650 |
DOI | 10.1145/3474085.3475412 |
摘要 | Generating "bullet-time"effects of human free-viewpoint videos is critical for immersive visual effects and VR/AR experience. Recent neural advances still lack the controllable and interactive bullet-time design ability for human free-viewpoint rendering, especially under the real-time, dynamic and general setting for our trajectory-aware task. To fill this gap, in this paper we propose a neural interactive bullet-time generator (iButter) for photo-realistic human free-viewpoint rendering from dense RGB streams, which enables flexible and interactive design for human bullet-time visual effects. Our iButter approach consists of a real-time preview and design stage as well as a trajectory-aware refinement stage. During preview, we propose an interactive bullet-time design approach by extending the NeRF rendering to a real-time and dynamic setting and getting rid of the tedious per-scene training. To this end, our bullet-time design stage utilizes a hybrid training set, light-weight network design and an efficient silhouette-based sampling strategy. During refinement, we introduce an efficient trajectory-aware scheme within 20 minutes, which jointly encodes the spatial, temporal consistency and semantic cues along the designed trajectory, achieving photo-realistic bullet-time viewing experience of human activities. Extensive experiments demonstrate the effectiveness of our approach for convenient interactive bullet-time design and photo-realistic human free-viewpoint video generation. © 2021 ACM. |
会议录编者/会议主办者 | ACM SIGMM |
关键词 | Rendering (computer graphics) Semantics Bullet time Design stage Free viewpoint renderings Free viewpoint video Neural rendering Neural representations Novel view synthesis Photo realistic Time design Visual effects |
会议名称 | 29th ACM International Conference on Multimedia, MM 2021 |
会议地点 | Virtual, Online, China |
会议日期 | October 20, 2021 - October 24, 2021 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computing Machinery, Inc |
EI入藏号 | 20214711200059 |
EI主题词 | Trajectories |
EI分类号 | 723.2 Data Processing and Image Processing ; 723.5 Computer Applications |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133507 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_许岚组 |
作者单位 | 1.ShanghaiTech University, Shanghai, China; 2.Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wang, Liao,Wang, Ziyu,Lin, Pei,et al. IButter: Neural Interactive Bullet Time Generator for Human Free-viewpoint Rendering[C]//ACM SIGMM:Association for Computing Machinery, Inc,2021:4641-4650. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Liao]的文章 |
[Wang, Ziyu]的文章 |
[Lin, Pei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Liao]的文章 |
[Wang, Ziyu]的文章 |
[Lin, Pei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Liao]的文章 |
[Wang, Ziyu]的文章 |
[Lin, Pei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。