Exploring the "Double-Edged Sword" Effect of Auto-Insight Recommendation in Exploratory Data Analysis
2021-07-01
会议录名称CEUR WORKSHOP PROCEEDINGS
ISSN1613-0073
卷号2903
发表状态已发表
摘要

Modern data analytics tools often provide visualizations as an accessible data window to users in exploratory data analysis (EDA). Still, many analysts feel lost in this process due to issues such as the high complexity of data. Auto-insight recommendations offer a promising alternative by suggesting possible interpretations of the data to users during EDA but might impose undesirable effects on users. In this study, we systematically explore the "double-edged sword"effect of auto-insight recommendations on EDA in terms of exploration assistance, message reliability, and interference. Particularly, we design and develop two versions of a Tableau-like visualization system termed TurboVis: One supports auto-insight recommendations while the other does not. We first demonstrate how typical visualization specification tools can be augmented by incorporating auto-insight recommendations and then conduct a within-subjects user study with 18 participants during which they experience both versions in EDA tasks. We find that although auto-insight recommendations encourage more visualization inspections, they also introduce biases to data exploration. The perceived level of message reliability and interference of auto-insight recommendations depend on data familiarity and task structures. Our work elicits design implications for embedding auto-insight recommendations into the EDA process. © 2021 Copyright for this paper by its authors.

关键词Data Analytics Data handling Information analysis User interfaces Visualization Analytics tools Data exploration Design implications Exploratory data analysis High complexity Specification tools Undesirable effects Visualization system
会议名称2021 Joint ACM Conference on Intelligent User Interfaces Workshops, ACMIUI-WS 2021
会议地点College Station, TX, United states
会议日期April 13, 2021 - April 17, 2021
收录类别EI
语种英语
出版者CEUR-WS
EI入藏号20212910657452
EI主题词Data visualization
EI分类号722.2 Computer Peripheral Equipment ; 723.2 Data Processing and Image Processing ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133465
专题信息科学与技术学院_PI研究组_李权组
作者单位
1.School of Information Science and Technology, ShanghaiTech University;
2.AI Group;
3.AI Department, Shenzhen Semacare Medical Technology Co.;
4.Department of Computer Science and Engineering, Hong Kong University of Science and Technology
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Li, Quan,Lin, Huanbin,Tang, Chunfeng,et al. Exploring the "Double-Edged Sword" Effect of Auto-Insight Recommendation in Exploratory Data Analysis[C]:CEUR-WS,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Quan]的文章
[Lin, Huanbin]的文章
[Tang, Chunfeng]的文章
百度学术
百度学术中相似的文章
[Li, Quan]的文章
[Lin, Huanbin]的文章
[Tang, Chunfeng]的文章
必应学术
必应学术中相似的文章
[Li, Quan]的文章
[Lin, Huanbin]的文章
[Tang, Chunfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。