| |||||||
ShanghaiTech University Knowledge Management System
Beyond universal saliency: Personalized Saliency prediction with multi-task CNN | |
2017 | |
会议录名称 | 26TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2017 |
页码 | 3887-3893 |
发表状态 | 已发表 |
摘要 | Saliency detection is a long standing problem in computer vision. Tremendous efforts have been focused on exploring a universal saliency model across users despite their differences in gender, race, age, etc. Yet recent psychology studies suggest that saliency is highly specific than universal: individuals exhibit heterogeneous gaze patterns when viewing an identical scene containing multiple salient objects. In this paper, we first show that such heterogeneity is common and critical for reliable saliency prediction. Our study also produces the first database of personalized saliency maps (PSMs). We model PSM based on universal saliency map (USM) shared by different participants and adopt a multitask CNN framework to estimate the discrepancy between PSM and USM. Comprehensive experiments demonstrate that our new PSM model and prediction scheme are effective and reliable. |
会议地点 | Melbourne, VIC, Australia |
收录类别 | EI |
资助项目 | National Natural Science Foundation of China[61502304] |
出版者 | International Joint Conferences on Artificial Intelligence |
EI入藏号 | 20174304308633 |
EI主题词 | Artificial intelligence ; Image segmentation |
EI分类号 | Artificial Intelligence:723.4 |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/13340 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_博士生 |
通讯作者 | Gao, Shenghua |
作者单位 | 1.ShanghaiTech University, Shanghai, China 2.University of Delaware, Newark; DE, United States 3.Plex-VR Digital Technology Co., Ltd., United States |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Yanyu,Li, Nianyi,Wu, Junru,et al. Beyond universal saliency: Personalized Saliency prediction with multi-task CNN[C]:International Joint Conferences on Artificial Intelligence,2017:3887-3893. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Yanyu]的文章 |
[Li, Nianyi]的文章 |
[Wu, Junru]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Yanyu]的文章 |
[Li, Nianyi]的文章 |
[Wu, Junru]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Yanyu]的文章 |
[Li, Nianyi]的文章 |
[Wu, Junru]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。