ShanghaiTech University Knowledge Management System
Latent Dependency Forest Models | |
2017 | |
会议录名称 | THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE |
页码 | 3733-3739 |
发表状态 | 已发表 |
摘要 | Probabilistic modeling is one of the foundations of modern machine learning and artificial intelligence. In this paper, we propose a novel type of probabilistic models named latent dependency forest models (LDFMs). A LDFM models the dependencies between random variables with a forest structure that can change dynamically based on the variable values. It is therefore capable of modeling context-specific independence. We parameterize a LDFM using a first-order non-projective dependency grammar. Learning LDFMs from data can be formulated purely as a parameter learning problem, and hence the difficult problem of model structure learning is circumvented. Our experimental results show that LDFMs are competitive with existing probabilistic models. |
会议地点 | San Francisco, CA, United states |
收录类别 | EI ; CPCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61503248] |
WOS记录号 | WOS:000485630703108 |
出版者 | ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE |
EI入藏号 | 20174104242978 |
EI主题词 | Forestry ; Learning systems |
EI分类号 | Artificial Intelligence:723.4 |
WOS关键词 | NETWORKS |
原始文献类型 | Proceedings Paper |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/13329 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_屠可伟组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chu, Shanbo,Jiang, Yong,Tu, Kewei. Latent Dependency Forest Models[C]:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2017:3733-3739. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。