Manhattan Room Layout Reconstruction from a Single 360 Image: A Comparative Study of State-of-the-Art Methods
2021-05
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION (IF:11.6[JCR-2023],14.5[5-Year])
ISSN09205691
EISSN15731405
卷号129期号:5页码:1410-1431
发表状态已发表
DOI10.1007/s11263-020-01426-8
摘要

Recent approaches for predicting layouts from 360 panoramas produce excellent results. These approaches build on a common framework consisting of three steps: a pre-processing step based on edge-based alignment, prediction of layout elements, and a post-processing step by fitting a 3D layout to the layout elements. Until now, it has been difficult to compare the methods due to multiple different design decisions, such as the encoding network (e.g., SegNet or ResNet), type of elements predicted (e.g., corners, wall/floor boundaries, or semantic segmentation), or method of fitting the 3D layout. To address this challenge, we summarize and describe the common framework, the variants, and the impact of the design decisions. For a complete evaluation, we also propose extended annotations for the Matterport3D dataset (Chang et al.: Matterport3d: learning from rgb-d data in indoor environments. arXiv:1709.06158, 2017), and introduce two depth-based evaluation metrics. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.

关键词Design Semantics Comparative studies Design decisions Evaluation metrics Indoor environment Post processing Pre processing step Semantic segmentation State of the art methods 3D room layout Deep learning Single image 3D Manhattan world
收录类别SCI ; SCIE ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000616466300001
出版者Springer
EI入藏号20210709923730
EI主题词Image reconstruction
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133214
专题信息科学与技术学院_PI研究组_彭其瀚组
通讯作者Zou, Chuhang
作者单位
1.University of Illinois at Urbana-Champaign, Champaign, United States;
2.National Tsing Hua University, Hsinchu, Taiwan;
3.National Chiao Tung University, Hsinchu, Taiwan;
4.ShanghaiTech University, Shanghai, China;
5.University of Washington, Seattle, United States;
6.Apple Inc., Cupertino, United States;
7.King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
推荐引用方式
GB/T 7714
Zou, Chuhang,Su, Jheng-Wei,Peng, Chi-Han,et al. Manhattan Room Layout Reconstruction from a Single 360 Image: A Comparative Study of State-of-the-Art Methods[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2021,129(5):1410-1431.
APA Zou, Chuhang.,Su, Jheng-Wei.,Peng, Chi-Han.,Colburn, Alex.,Shan, Qi.,...&Hoiem, Derek.(2021).Manhattan Room Layout Reconstruction from a Single 360 Image: A Comparative Study of State-of-the-Art Methods.INTERNATIONAL JOURNAL OF COMPUTER VISION,129(5),1410-1431.
MLA Zou, Chuhang,et al."Manhattan Room Layout Reconstruction from a Single 360 Image: A Comparative Study of State-of-the-Art Methods".INTERNATIONAL JOURNAL OF COMPUTER VISION 129.5(2021):1410-1431.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zou, Chuhang]的文章
[Su, Jheng-Wei]的文章
[Peng, Chi-Han]的文章
百度学术
百度学术中相似的文章
[Zou, Chuhang]的文章
[Su, Jheng-Wei]的文章
[Peng, Chi-Han]的文章
必应学术
必应学术中相似的文章
[Zou, Chuhang]的文章
[Su, Jheng-Wei]的文章
[Peng, Chi-Han]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。