Fusion Images of Versatile Array Sensors for Multiobject Detection
2021
发表期刊IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT (IF:5.6[JCR-2023],5.6[5-Year])
ISSN0018-9456
EISSN1557-9662
卷号70
发表状态已发表
DOI10.1109/TIM.2021.3124842
摘要

Regular inspections of steam generator tubes (SGTs) to evaluate structure degradation and sludge deposition are essential for maintaining safety and efficiency of power plants. However, with the interference of complex structures such as tube support plates (TSPs), simultaneously detecting multiple objects is still a challenging problem. This article proposes a novel integrated versatile probe for multiobject inspection. The probe consists of a low-frequency operating region (LFOR) with tunnel magnetoresistance (TMR) array sensors and a high-frequency operating region (HFOR) that uses array coils as the pickup sensors. After frequency optimization and image calibration, the signals of three types of objects are concentrated in three different modalities of the probe's output. Then, features for position of TSP, profile, and location of sludges are extracted from the image of LFOR. A feature extraction algorithm based on convolution and pattern search is developed to extract defects' features from the quadrature component image of HFOR. Finally, a hierarchical independent decision-level data fusion scheme is adopted to integrate and visualize the recognition and discrimination of multiple objects in an RGB image. Combinations of machined defects, sludges, and TSP mockup on an SGT are experimentally tested by the probe. Experimental results show that the TSP and sludges are detected accurately. Most of the defects, including the defect embedded under the TSP, can be identified and localized with a high intersection of union (IoU) of 0.92. The TSP, sludges, and defects are clearly visualized in the fused image. For complex scenarios with multiple objects superimposed, the fused image shows each type of objects clearly.

关键词Electron tubes Sensor arrays Probes Coils Sensors Inspection Feature extraction Array sensor image fusion multiobject inspection nondestructive testing (NDT)
URL查看原文
收录类别SCI ; EI ; SCIE
语种英语
WOS研究方向Engineering ; Instruments & Instrumentation
WOS类目Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:000719563600010
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
原始文献类型Article
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133129
专题信息科学与技术学院
信息科学与技术学院_PI研究组_叶朝锋组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yinghao Bai,Xinchen Tao,Xin Chen,et al. Fusion Images of Versatile Array Sensors for Multiobject Detection[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2021,70.
APA Yinghao Bai,Xinchen Tao,Xin Chen,Jingyi Yu,&Chaofeng Ye.(2021).Fusion Images of Versatile Array Sensors for Multiobject Detection.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,70.
MLA Yinghao Bai,et al."Fusion Images of Versatile Array Sensors for Multiobject Detection".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 70(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yinghao Bai]的文章
[Xinchen Tao]的文章
[Xin Chen]的文章
百度学术
百度学术中相似的文章
[Yinghao Bai]的文章
[Xinchen Tao]的文章
[Xin Chen]的文章
必应学术
必应学术中相似的文章
[Yinghao Bai]的文章
[Xinchen Tao]的文章
[Xin Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。