Homomorphic Sensing: Sparsity and Noise
2021
会议录名称PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING
卷号139
页码8464-8475
发表状态已发表
DOInone
摘要Unlabeled sensing is a recent problem encompassing many data science and engineering applications and typically formulated as solving linear equations whose right-hand side vector has undergone an unknown permutation. It was generalized to the homomorphic sensing problem by replacing the unknown permutation with an unknown linear map from a given finite set of linear maps. In this paper we present tighter and simpler conditions for the homomorphic sensing problem to admit a unique solution. We show that this solution is locally stable under noise, while under a sparsity assumption it remains unique under less demanding conditions. Sparsity in the context of unlabeled sensing leads to the problem of unlabeled compressed sensing, and a consequence of our general theory is the existence under mild conditions of a unique sparsest solution. On the algorithmic level, we solve unlabeled compressed sensing by an iterative algorithm validated by synthetic data experiments. Finally, under the unifying homomorphic sensing framework we connect unlabeled sensing to other important practical problems. Copyright © 2021 by the author(s)
会议录编者/会议主办者Apple ; ByteDance ; et al. ; Facebook AI ; Invenia Labs ; MAYO Clinic, Center for Individualized Medicine
关键词Iterative methods Machine learning Compressed-Sensing Condition Engineering applications Finite set General theory Linear maps Science and engineering Science applications Sensing problems Simple++
会议名称38th International Conference on Machine Learning, ICML 2021
会议地点Virtual, Online
会议日期July 18, 2021 - July 24, 2021
URL查看原文
收录类别CPCI ; CPCI-S ; EI
语种英语
出版者ML Research Press
EI入藏号20232414206131
EI主题词Compressed sensing
EISSN2640-3498
EI分类号716.1 Information Theory and Signal Processing ; 723.4 Artificial Intelligence ; 921.6 Numerical Methods
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133097
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_Manolis Tsakiris组
信息科学与技术学院_本科生
推荐引用方式
GB/T 7714
Liangzu Peng,Boshi Wang,Manolis Tsakiris. Homomorphic Sensing: Sparsity and Noise[C]//Apple, ByteDance, et al., Facebook AI, Invenia Labs, MAYO Clinic, Center for Individualized Medicine:ML Research Press,2021:8464-8475.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liangzu Peng]的文章
[Boshi Wang]的文章
[Manolis Tsakiris]的文章
百度学术
百度学术中相似的文章
[Liangzu Peng]的文章
[Boshi Wang]的文章
[Manolis Tsakiris]的文章
必应学术
必应学术中相似的文章
[Liangzu Peng]的文章
[Boshi Wang]的文章
[Manolis Tsakiris]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。