ShanghaiTech University Knowledge Management System
Homomorphic Sensing: Sparsity and Noise | |
2021 | |
会议录名称 | PROCEEDINGS OF THE 38TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING |
卷号 | 139 |
页码 | 8464-8475 |
发表状态 | 已发表 |
DOI | none |
摘要 | Unlabeled sensing is a recent problem encompassing many data science and engineering applications and typically formulated as solving linear equations whose right-hand side vector has undergone an unknown permutation. It was generalized to the homomorphic sensing problem by replacing the unknown permutation with an unknown linear map from a given finite set of linear maps. In this paper we present tighter and simpler conditions for the homomorphic sensing problem to admit a unique solution. We show that this solution is locally stable under noise, while under a sparsity assumption it remains unique under less demanding conditions. Sparsity in the context of unlabeled sensing leads to the problem of unlabeled compressed sensing, and a consequence of our general theory is the existence under mild conditions of a unique sparsest solution. On the algorithmic level, we solve unlabeled compressed sensing by an iterative algorithm validated by synthetic data experiments. Finally, under the unifying homomorphic sensing framework we connect unlabeled sensing to other important practical problems. Copyright © 2021 by the author(s) |
会议录编者/会议主办者 | Apple ; ByteDance ; et al. ; Facebook AI ; Invenia Labs ; MAYO Clinic, Center for Individualized Medicine |
关键词 | Iterative methods Machine learning Compressed-Sensing Condition Engineering applications Finite set General theory Linear maps Science and engineering Science applications Sensing problems Simple++ |
会议名称 | 38th International Conference on Machine Learning, ICML 2021 |
会议地点 | Virtual, Online |
会议日期 | July 18, 2021 - July 24, 2021 |
URL | 查看原文 |
收录类别 | CPCI ; CPCI-S ; EI |
语种 | 英语 |
出版者 | ML Research Press |
EI入藏号 | 20232414206131 |
EI主题词 | Compressed sensing |
EISSN | 2640-3498 |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.4 Artificial Intelligence ; 921.6 Numerical Methods |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133097 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_Manolis Tsakiris组 信息科学与技术学院_本科生 |
推荐引用方式 GB/T 7714 | Liangzu Peng,Boshi Wang,Manolis Tsakiris. Homomorphic Sensing: Sparsity and Noise[C]//Apple, ByteDance, et al., Facebook AI, Invenia Labs, MAYO Clinic, Center for Individualized Medicine:ML Research Press,2021:8464-8475. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。