ShanghaiTech University Knowledge Management System
AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array | |
2022-04-01 | |
发表期刊 | IEEE ROBOTICS AND AUTOMATION LETTERS (IF:4.6[JCR-2023],5.5[5-Year]) |
ISSN | 2377-3774 |
卷号 | 7期号:2页码:666-673 |
发表状态 | 已发表 |
DOI | 10.1109/LRA.2021.3130368 |
摘要 | Holographic acoustic field has shown great potential for non-contact robotic manipulations of millimeter or sub-millimeter size objects to effectively deliver acoustic power. The latest technology for generating dynamic holographic acoustic field is through phased transducer array, where relative phases of emitted acoustic waves from transducers are independently controlled to modulate the acoustic interference field. While the forward kinematics of a phased array based robotic manipulation system is simple and straightforward, the inverse kinematics (i.e., the mapping from a given holographic acoustic field to array phases for control purpose), however, is mathematically non-linear and unsolvable, presenting challenges in developing wider applications of holographic acoustic field for robotic manipulation. Considering, thus far, there are still no effective solutions reported, the authors put intensive efforts to solve this problem using a machine learning approach, namely a deep neural network architecture, which we refer to as AcousNet. Experimental results demonstrate the effectiveness of the proposed method for dynamic holographic acoustic field generation from phased transducer array. |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133092 |
专题 | 信息科学与技术学院 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_刘松组 |
作者单位 | 1.ShanghaiTech Automation and Robotics Center, ShanghaiTech University, Shanghai, China 2.Department of Communication, Santa Clara University, Santa Clara, CA, USA 3.Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China 4.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 5.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chengxi Zhong,Yuyu Jia,David C. Jeong,et al. AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2022,7(2):666-673. |
APA | Chengxi Zhong,Yuyu Jia,David C. Jeong,Yao Guo,&Song Liu.(2022).AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array.IEEE ROBOTICS AND AUTOMATION LETTERS,7(2),666-673. |
MLA | Chengxi Zhong,et al."AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array".IEEE ROBOTICS AND AUTOMATION LETTERS 7.2(2022):666-673. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。