AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array
2022-04-01
发表期刊IEEE ROBOTICS AND AUTOMATION LETTERS (IF:4.6[JCR-2023],5.5[5-Year])
ISSN2377-3774
卷号7期号:2页码:666-673
发表状态已发表
DOI10.1109/LRA.2021.3130368
摘要Holographic acoustic field has shown great potential for non-contact robotic manipulations of millimeter or sub-millimeter size objects to effectively deliver acoustic power. The latest technology for generating dynamic holographic acoustic field is through phased transducer array, where relative phases of emitted acoustic waves from transducers are independently controlled to modulate the acoustic interference field. While the forward kinematics of a phased array based robotic manipulation system is simple and straightforward, the inverse kinematics (i.e., the mapping from a given holographic acoustic field to array phases for control purpose), however, is mathematically non-linear and unsolvable, presenting challenges in developing wider applications of holographic acoustic field for robotic manipulation. Considering, thus far, there are still no effective solutions reported, the authors put intensive efforts to solve this problem using a machine learning approach, namely a deep neural network architecture, which we refer to as AcousNet. Experimental results demonstrate the effectiveness of the proposed method for dynamic holographic acoustic field generation from phased transducer array.
URL查看原文
收录类别SCI ; SCIE ; EI
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/133092
专题信息科学与技术学院
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘松组
作者单位
1.ShanghaiTech Automation and Robotics Center, ShanghaiTech University, Shanghai, China
2.Department of Communication, Santa Clara University, Santa Clara, CA, USA
3.Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
4.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
5.Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Chengxi Zhong,Yuyu Jia,David C. Jeong,et al. AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2022,7(2):666-673.
APA Chengxi Zhong,Yuyu Jia,David C. Jeong,Yao Guo,&Song Liu.(2022).AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array.IEEE ROBOTICS AND AUTOMATION LETTERS,7(2),666-673.
MLA Chengxi Zhong,et al."AcousNet: A Deep Learning Based Approach to Dynamic 3D Holographic Acoustic Field Generation From Phased Transducer Array".IEEE ROBOTICS AND AUTOMATION LETTERS 7.2(2022):666-673.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chengxi Zhong]的文章
[Yuyu Jia]的文章
[David C. Jeong]的文章
百度学术
百度学术中相似的文章
[Chengxi Zhong]的文章
[Yuyu Jia]的文章
[David C. Jeong]的文章
必应学术
必应学术中相似的文章
[Chengxi Zhong]的文章
[Yuyu Jia]的文章
[David C. Jeong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。