Robotic Manipulation under Harsh Conditions Using Self-Healing Silk-Based Iontronics
2022-01-14
发表期刊ADVANCED SCIENCE (IF:14.3[JCR-2023],16.3[5-Year])
ISSN2198-3844
EISSN2198-3844
发表状态已发表
DOI10.1002/advs.202102596
摘要

Progress toward intelligent human-robotic interactions requires monitoring sensors that are mechanically flexible, facile to implement, and able to harness recognition capability under harsh environments. Conventional sensing methods have been divided for human-side collection or robot-side feedback and are not designed with these criteria in mind. However, the iontronic polymer is an example of a general method that operates properly on both human skin (commonly known as skin electronics or iontronics) and the machine/robotic surface. Here, a unique iontronic composite (silk protein/glycerol/Ca(II) ion) and supportive molecular mechanism are developed to simultaneously achieve high conductivity (around 6 k omega at 50 kHz), self-healing (within minutes), strong stretchability (around 1000%), high strain sensitivity and transparency, and universal adhesiveness across a broad working temperature range (-40-120 degrees C). Those merits facilitate the development of iontronic sensing and the implementation of damage-resilient robotic manipulation. Combined with a machine learning algorithm and specified data collection methods, the system is able to classify 1024 types of human and robot hand gestures under challenging scenarios and to offer excellent object recognition with an accuracy of 99.7%.

关键词gesture object recognition human-machine interface silk-based iontronics skin electronics iontronics
收录类别SCIE ; EI
语种英语
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:000714595700001
出版者WILEY
原始文献类型Article; Early Access
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128580
专题物质科学与技术学院_特聘教授组_陶虎组
通讯作者Tao, Tiger H.
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China;
2.Univ Chinese Acad Sci, Sch Grad Study, Beijing 100049, Peoples R China;
3.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China;
4.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, 2020 X Lab, Shanghai 200050, Peoples R China;
5.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China;
6.Zhangjiang Lab, Inst Brain Intelligence Technol, Shanghai 200031, Peoples R China;
7.Shanghai Res Ctr Brain Sci & Brain Inspired Intel, Shanghai 200031, Peoples R China;
8.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
通讯作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Liu, Mengwei,Zhang, Yujia,Zhang, Yanghong,et al. Robotic Manipulation under Harsh Conditions Using Self-Healing Silk-Based Iontronics[J]. ADVANCED SCIENCE,2022.
APA Liu, Mengwei,Zhang, Yujia,Zhang, Yanghong,Zhou, Zhitao,Qin, Nan,&Tao, Tiger H..(2022).Robotic Manipulation under Harsh Conditions Using Self-Healing Silk-Based Iontronics.ADVANCED SCIENCE.
MLA Liu, Mengwei,et al."Robotic Manipulation under Harsh Conditions Using Self-Healing Silk-Based Iontronics".ADVANCED SCIENCE (2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Mengwei]的文章
[Zhang, Yujia]的文章
[Zhang, Yanghong]的文章
百度学术
百度学术中相似的文章
[Liu, Mengwei]的文章
[Zhang, Yujia]的文章
[Zhang, Yanghong]的文章
必应学术
必应学术中相似的文章
[Liu, Mengwei]的文章
[Zhang, Yujia]的文章
[Zhang, Yanghong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。