| |||||||
ShanghaiTech University Knowledge Management System
Over-the-Air Decentralized Federated Learning | |
2021 | |
会议录名称 | 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT)
![]() |
页码 | 455-460 |
发表状态 | 已发表 |
DOI | 10.1109/ISIT45174.2021.9517780 |
摘要 | In this paper, we consider decentralized federated learning (FL) over wireless networks, where over-the-air computation (AirComp) is adopted to facilitate the local model consensus in a device-to-device (D2D) communication manner. However, the AirComp-based consensus phase brings the additive noise in each algorithm itera`te and the consensus needs to be robust to wireless network topology changes, which introduce a coupled and novel challenge of establishing the convergence for wireless decentralized FL algorithm. To facilitate consensus phase, we propose an AirComp-based DSGD with gradient tracking and variance reduction (DSGT-VR) algorithm, where both precoding and decoding strategies are developed for D2D communication. Furthermore, we prove that the proposed algorithm converges linearly and establish the optimality gap for strongly convex and smooth loss functions, taking into account the channel fading and noise. The theoretical result shows that the additional error bound in the optimality gap depends on the number of devices. Extensive simulations verify the theoretical results and show that the proposed algorithm outperforms other benchmark decentralized FL algorithms over wireless networks. |
关键词 | Fading channels Performance evaluation Wireless networks Precoding Atmospheric modeling Simulation Collaborative work |
会议名称 | IEEE International Symposium on Information Theory (ISIT) |
会议地点 | ELECTR NETWORK |
会议日期 | JUL 12-20, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI ; CPCI |
WOS记录号 | WOS:000701502200078 |
出版者 | IEEE |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128475 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yandong Shi,Yong Zhou,Yuanming Shi. Over-the-Air Decentralized Federated Learning[C]:IEEE,2021:455-460. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。