消息
×
loading..
Ultrasensitive and Self-Powered Terahertz Detection Driven by Nodal-Line Dirac Fermions and Van der Waals Architecture
2021-12
发表期刊ADVANCED SCIENCE (IF:14.3[JCR-2023],16.3[5-Year])
ISSN2198-3844
EISSN2198-3844
发表状态已发表
DOI10.1002/advs.202102088
摘要

Terahertz detection has been highly sought to open a range of cutting-edge applications in biomedical, high-speed communications, astronomy, security screening, and military surveillance. Nonetheless, these ideal prospects are hindered by the difficulties in photodetection featuring self-powered operation at room temperature. Here, this challenge is addressed for the first time by synthesizing the high-quality ZrGeSe with extraordinary quantum properties of Dirac nodal-line semimetal. Benefiting from its high mobility and gapless nature, a metal-ZrGeSe-metal photodetector with broken mirror symmetry allows for a high-efficiency photoelectric conversion assisted by the photo-thermoelectric effect. The designed architecture features ultrahigh sensitivity, excellent ambient stability, and an efficient rectified signal even above 0.26 THz. Maximum responsivity larger than 0.11 A W-1, response time of 8.3 mu s, noise equivalent power (NEP) less than 0.15 nW Hz(-1/2), and demonstrative imaging application are all achieved. The superb performances with a lower dark current and NEP less than 15 pW Hz(-1/2) are validated through integrating the van der Waals heterostructure. These results open up an appealing perspective to explore the nontrivial topology of Dirac nodal-line semimetal by devising the peculiar device geometry that allows for a novel roadmap to address targeted terahertz application requirements.

关键词nodal-line semimetals photo-thermoelectric effect terahertz photodetector ZrGeSe single crystals
收录类别SCIE ; EI
语种英语
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:000708703400001
出版者WILEY
原始文献类型Article; Early Access
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128450
专题物质科学与技术学院_特聘教授组_陆卫组
物质科学与技术学院_特聘教授组_陈效双组
通讯作者Wang, Lin; Zhang, Kaixuan; Xing, Huaizhong
作者单位
1.Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Dept Optoelect Sci & Engn, Shanghai 201620, Peoples R China;
2.Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, 500 Yu Tian Rd, Shanghai 200083, Peoples R China;
3.Chinese Acad Sci, Suzhou Inst Nanotech & NanoBion SINANO, CAS Key Lab Nanophoton Mat & Devices, Ruoshui Rd 398, Suzhou 215123, Jiangsu, Peoples R China;
4.Chinese Acad Sci, Suzhou Inst Nanotech & NanoBion SINANO, Key Lab Nanodevices & Applicat, i Lab, Ruoshui Rd 398, Suzhou 215123, Jiangsu, Peoples R China;
5.Univ Sci & Technol China, Sch Nanotech & Nanobion, Jinzhai Rd 96, Hefei 230026, Anhui, Peoples R China;
6.Res Ctr Intelligent Network, Zhejiang Lab, Hangzhou 311121, Peoples R China;
7.Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China;
8.50th Res Inst China Elect Technol Grp, Shanghai 200331, Peoples R China;
9.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Libo,Dong, Zhuo,Wang, Lin,et al. Ultrasensitive and Self-Powered Terahertz Detection Driven by Nodal-Line Dirac Fermions and Van der Waals Architecture[J]. ADVANCED SCIENCE,2021.
APA Zhang, Libo.,Dong, Zhuo.,Wang, Lin.,Hu, Yibin.,Guo, Cheng.,...&Lu, Wei.(2021).Ultrasensitive and Self-Powered Terahertz Detection Driven by Nodal-Line Dirac Fermions and Van der Waals Architecture.ADVANCED SCIENCE.
MLA Zhang, Libo,et al."Ultrasensitive and Self-Powered Terahertz Detection Driven by Nodal-Line Dirac Fermions and Van der Waals Architecture".ADVANCED SCIENCE (2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Libo]的文章
[Dong, Zhuo]的文章
[Wang, Lin]的文章
百度学术
百度学术中相似的文章
[Zhang, Libo]的文章
[Dong, Zhuo]的文章
[Wang, Lin]的文章
必应学术
必应学术中相似的文章
[Zhang, Libo]的文章
[Dong, Zhuo]的文章
[Wang, Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。