| |||||||
ShanghaiTech University Knowledge Management System
Kinase-substrate Edge Biomarkers Provide a More Accurate Prognostic Prediction in ER-negative Breast Cancer | |
2020-10 | |
发表期刊 | GENOMICS PROTEOMICS & BIOINFORMATICS (IF:11.5[JCR-2023],10.3[5-Year]) |
ISSN | 1672-0229 |
EISSN | 2210-3244 |
卷号 | 18期号:5页码:525-538 |
DOI | 10.1016/j.gpb.2019.11.012 |
摘要 | The estrogen receptor (ER)-negative breast cancer subtype is aggressive with few treat-ment options available. To identify specific prognostic factors for ER-negative breast cancer, this study included 705,729 and 1034 breast invasive cancer patients from the Surveillance, Epidemiol-ogy, and End Results (SEER) and The Cancer Genome Atlas (TCGA) databases, respectively. To identify key differential kinase-substrate node and edge biomarkers between ER-negative and ER -positive breast cancer patients, we adopted a network-based method using correlation coefficients between molecular pairs in the kinase regulatory network. Integrated analysis of the clinical and molecular data revealed the significant prognostic power of kinase-substrate node and edge features for both subtypes of breast cancer. Two promising kinase-substrate edge features, CSNK1A1- NFATC3 and SRC-OCLN, were identified for more accurate prognostic prediction in ER negative breast cancer patients. |
关键词 | ER-negative breast cancer Edge biomarkers Kinase Substrate Prognostic prediction |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Genetics & Heredity |
WOS类目 | Genetics & Heredity |
WOS记录号 | WOS:000685123500004 |
出版者 | ELSEVIER |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128006 |
专题 | 生命科学与技术学院_特聘教授组_陈洛南组 生命科学与技术学院_特聘教授组_曾嵘组 生命科学与技术学院_特聘教授组_李亦学组 |
通讯作者 | Chen, Luonan; Li, Yixue; Zeng, Rong |
作者单位 | 1.Chinese Acad Sci, CAS Ctr Excellence Mol Cell Sci, Inst Biochem & Cell Biol, CAS Key Lab Syst Biol,Shanghai Inst Biol Sci, Shanghai 200031, Peoples R China; 2.Univ Chinese Acad Sci, Shanghai 200031, Peoples R China; 3.Shanghai Jiao Tong Univ, Sch Math Sci, Dept Stat, Shanghai 200240, Peoples R China; 4.Shanghai Jiao Tong Univ, Sch Life Sci & Biotechnol, Shanghai 200240, Peoples R China; 5.ShanghaiTech Univ, Dept Life Sci, Shanghai 201210, Peoples R China; 6.Chinese Acad Sci, CAS Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China; 7.Chinese Acad Sci, Biomed Big Data Ctr, CAS MPG Partner Inst Computat Biol,Shanghai Inst, Shanghai Inst Nutr & Hlth,Key Lab Computat Biol, Shanghai 200031, Peoples R China; 8.Fudan Univ, Collaborat Innovat Ctr Genet & Dev, Shanghai 200032, Peoples R China; 9.Shanghai Acad Sci & Technol, Shanghai Ctr Bioinformat Technol, Shanghai 201203, Peoples R China; 10.Shanghai Jiao Tong Univ, Ctr Single Cell Omics, Sch Publ Hlth, Sch Med, Shanghai 200025, Peoples R China |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Sun, Yidi,Li, Chen,Pang, Shichao,et al. Kinase-substrate Edge Biomarkers Provide a More Accurate Prognostic Prediction in ER-negative Breast Cancer[J]. GENOMICS PROTEOMICS & BIOINFORMATICS,2020,18(5):525-538. |
APA | Sun, Yidi.,Li, Chen.,Pang, Shichao.,Yao, Qianlan.,Chen, Luonan.,...&Zeng, Rong.(2020).Kinase-substrate Edge Biomarkers Provide a More Accurate Prognostic Prediction in ER-negative Breast Cancer.GENOMICS PROTEOMICS & BIOINFORMATICS,18(5),525-538. |
MLA | Sun, Yidi,et al."Kinase-substrate Edge Biomarkers Provide a More Accurate Prognostic Prediction in ER-negative Breast Cancer".GENOMICS PROTEOMICS & BIOINFORMATICS 18.5(2020):525-538. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。