| |||||||
ShanghaiTech University Knowledge Management System
iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients | |
2021 | |
发表期刊 | NPJ DIGITAL MEDICINE (IF:12.4[JCR-2023],15.2[5-Year]) |
ISSN | 2398-6352 |
卷号 | 4期号:1 |
DOI | 10.1038/s41746-021-00496-3 |
摘要 | Most prior studies focused on developing models for the severity or mortality prediction of COVID-19 patients. However, effective models for recovery-time prediction are still lacking. Here, we present a deep learning solution named iCOVID that can successfully predict the recovery-time of COVID-19 patients based on predefined treatment schemes and heterogeneous multimodal patient information collected within 48 hours after admission. Meanwhile, an interpretable mechanism termed FSR is integrated into iCOVID to reveal the features greatly affecting the prediction of each patient. Data from a total of 3008 patients were collected from three hospitals in Wuhan, China, for large-scale verification. The experiments demonstrate that iCOVID can achieve a time-dependent concordance index of 74.9% (95% CI: 73.6-76.3%) and an average day error of 4.4 days (95% CI: 4.2-4.6 days). Our study reveals that treatment schemes, age, symptoms, comorbidities, and biomarkers are highly related to recovery-time predictions. |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Health Care Sciences & Services ; Medical Informatics |
WOS类目 | Health Care Sciences & Services ; Medical Informatics |
WOS记录号 | WOS:000686640000001 |
出版者 | NATURE PORTFOLIO |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127984 |
专题 | 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Wang, Jun; Li, Xiangdong; Shen, Dinggang; Qian, Dahong; Wang, Jian |
作者单位 | 1.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China; 2.Army Med Univ, Third Mil Med Univ, Southwest Hosp, Dept Radiol, Chongqing, Peoples R China; 3.Army Med Univ, Third Mil Med Univ, Southwest Hosp, Dept Gastroenterol, Chongqing, Peoples R China; 4.Stanford Univ, Dept Radiat Oncol, Sch Med, Stanford, CA 94305 USA; 5.Commun Univ Zhejiang, Coll Media, Hangzhou, Peoples R China; 6.Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China; 7.Ruijin Hosp, Dept Nucl Med, Shanghai, Peoples R China; 8.Tongji Univ, Shanghai Pulm Hosp, Sch Med, Dept Thorac Surg, Shanghai, Peoples R China; 9.PLA, Gen Hosp, Southern Theatre Command, Dept Radiol, Guangzhou, Peoples R China; 10.Huoshenshan Hosp, Dept Radiol, Wuhan, Peoples R China; 11.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China; 12.Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China |
通讯作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Wang, Jun,Liu, Chen,Li, Jingwen,et al. iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients[J]. NPJ DIGITAL MEDICINE,2021,4(1). |
APA | Wang, Jun.,Liu, Chen.,Li, Jingwen.,Yuan, Cheng.,Zhang, Lichi.,...&Wang, Jian.(2021).iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients.NPJ DIGITAL MEDICINE,4(1). |
MLA | Wang, Jun,et al."iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients".NPJ DIGITAL MEDICINE 4.1(2021). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Jun]的文章 |
[Liu, Chen]的文章 |
[Li, Jingwen]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Jun]的文章 |
[Liu, Chen]的文章 |
[Li, Jingwen]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Jun]的文章 |
[Liu, Chen]的文章 |
[Li, Jingwen]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。