消息
×
loading..
Identifying patch-level MSI from histological images of Colorectal Cancer by a Knowledge Distillation Model
2020
会议录名称2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE
ISSN2156-1125
页码1043-1046
发表状态已发表
DOI10.1109/BIBM49941.2020.9313141
摘要

Microsatellite instability (MSI) is the result of a defective DNA mismatch repair (MMR) system, and its presence occurs in a variety of cancers. The determination of MSI in colorectal cancer (CRC) will have a better prognosis and management of cancer patients. As the routine MSI identification via molecular testing is expensive, time-consuming, and region-restricted, novel methods to detect MSI are of great interest. In this work, we propose a multi-stage convolutional neural network (CNN) based framework to identify MSI status in colorectal cancer patients from histopathological images. A mislabel-aware module is designed to deal with the uncertainty problem in global-local labelling. An auto-grading model is proposed to discriminate patches by the degree of their histopathological correlation with recognizable MSI status, and subsequently aggregate the weights to make slide-level predictions. Our proposed methodology outperforms the existing models in the classification accuracy, and explicitly sorts out patches with representative features. The research outcome has the potential to assist in the interpretation of histopathology as a surrogate for MSI testing and also in the study of recognizable morphology of MSI-H/MSS tumors. Furthermore, this approach can be extended and applied to other cancer types.

会议录编者/会议主办者IEEE, Seoul Natl Univ, Bioinformat Inst, Korea Genome Open HRD, Korea Genome Organization, Bio Synergy Res Ctr, Korean Federation of Science and Technology Societies, Seoul Natl Univ, Dept Stat, IEEE Tech Comm Computat Life Sci
关键词Microsatellite instability deep learning convolutional neural network distillation
会议名称IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM)
会议地点ELECTR NETWORK
会议日期DEC 16-19, 2020
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
WOS研究方向Biochemistry & Molecular Biology ; Computer Science ; Mathematical & Computational Biology
WOS类目Biochemical Research Methods ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology
WOS记录号WOS:000659487101021
出版者IEEE COMPUTER SOC
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127952
专题生物医学工程学院
生物医学工程学院_PI研究组_沈定刚组
作者单位
1.Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2.School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
3.Department of Obstetrics and Gynecology, Columbia University, NY, USA
4.Department of Micro-Nano Electronics, Shanghai Jiao Tong University, Shanghai, China
5.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Jing Ke,Yiqing Shen,Jason D. Wright,et al. Identifying patch-level MSI from histological images of Colorectal Cancer by a Knowledge Distillation Model[C]//IEEE, Seoul Natl Univ, Bioinformat Inst, Korea Genome Open HRD, Korea Genome Organization, Bio Synergy Res Ctr, Korean Federation of Science and Technology Societies, Seoul Natl Univ, Dept Stat, IEEE Tech Comm Computat Life Sci:IEEE COMPUTER SOC,2020:1043-1046.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jing Ke]的文章
[Yiqing Shen]的文章
[Jason D. Wright]的文章
百度学术
百度学术中相似的文章
[Jing Ke]的文章
[Yiqing Shen]的文章
[Jason D. Wright]的文章
必应学术
必应学术中相似的文章
[Jing Ke]的文章
[Yiqing Shen]的文章
[Jason D. Wright]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。