ShanghaiTech University Knowledge Management System
CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY | |
2021 | |
发表期刊 | SIAM JOURNAL ON SCIENTIFIC COMPUTING (IF:3.0[JCR-2023],3.2[5-Year]) |
ISSN | 1064-8275 |
EISSN | 1095-7197 |
卷号 | 43期号:3页码:B678-B711 |
DOI | 10.1137/20M1367350 |
摘要 | This work investigates the electrical impedance tomography problem when only limited boundary measurements are available, which is known to be challenging due to the extreme ill-posedness. Based on the direct sampling method (DSM) introduced in [Y. T. Chow, K. Ito, and J. Zou, Inverse Problems, 30 (2016), 095003], we propose deep direct sampling methods (DDSMs) to locate inhomogeneous inclusions in which two types of deep neural networks (DNNs) are constructed to approximate the index function (functional): fully connected neural networks and convolutional neural networks. The proposed DDSMs are easy to be implemented, capable of incorporating multiple Cauchy data pairs to achieve high-quality reconstruction and highly robust with respect to large noise. Additionally, the implementation of DDSMs adopts offine-online decomposition, which helps to reduce a lot of computational costs and makes DDSMs as efficient as the conventional DSM proposed by Chow, Ito, and Zou. The numerical experiments are presented to demonstrate the efficacy and show the potential benefits of combining DNN with DSM. |
关键词 | deep learning inverse problems direct sampling methods electrical impedance tomography reconstruction algorithm limited boundary data Convolutional neural networks Electric impedance Electric impedance measurement Electric impedance tomography Inverse problems Boundary measurements Computational costs Direct sampling method Electrical impedance tomography Fully connected neural network High quality reconstruction Inhomogeneous inclusions Numerical experiments |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000674142500039 |
出版者 | SIAM PUBLICATIONS |
EI入藏号 | 20212410494411 |
EI主题词 | Deep neural networks |
EI分类号 | 701.1 Electricity: Basic Concepts and Phenomena ; 942.2 Electric Variables Measurements |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127945 |
专题 | 信息科学与技术学院 数学科学研究所_PI研究组(P)_姜嘉骅组 |
通讯作者 | Guo, Ruchi |
作者单位 | 1.Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA; 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Guo, Ruchi,Jiang, Jiahua. CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2021,43(3):B678-B711. |
APA | Guo, Ruchi,&Jiang, Jiahua.(2021).CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY.SIAM JOURNAL ON SCIENTIFIC COMPUTING,43(3),B678-B711. |
MLA | Guo, Ruchi,et al."CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY".SIAM JOURNAL ON SCIENTIFIC COMPUTING 43.3(2021):B678-B711. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Guo, Ruchi]的文章 |
[Jiang, Jiahua]的文章 |
百度学术 |
百度学术中相似的文章 |
[Guo, Ruchi]的文章 |
[Jiang, Jiahua]的文章 |
必应学术 |
必应学术中相似的文章 |
[Guo, Ruchi]的文章 |
[Jiang, Jiahua]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。