CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY
2021
发表期刊SIAM JOURNAL ON SCIENTIFIC COMPUTING (IF:3.0[JCR-2023],3.2[5-Year])
ISSN1064-8275
EISSN1095-7197
卷号43期号:3页码:B678-B711
DOI10.1137/20M1367350
摘要This work investigates the electrical impedance tomography problem when only limited boundary measurements are available, which is known to be challenging due to the extreme ill-posedness. Based on the direct sampling method (DSM) introduced in [Y. T. Chow, K. Ito, and J. Zou, Inverse Problems, 30 (2016), 095003], we propose deep direct sampling methods (DDSMs) to locate inhomogeneous inclusions in which two types of deep neural networks (DNNs) are constructed to approximate the index function (functional): fully connected neural networks and convolutional neural networks. The proposed DDSMs are easy to be implemented, capable of incorporating multiple Cauchy data pairs to achieve high-quality reconstruction and highly robust with respect to large noise. Additionally, the implementation of DDSMs adopts offine-online decomposition, which helps to reduce a lot of computational costs and makes DDSMs as efficient as the conventional DSM proposed by Chow, Ito, and Zou. The numerical experiments are presented to demonstrate the efficacy and show the potential benefits of combining DNN with DSM.
关键词deep learning inverse problems direct sampling methods electrical impedance tomography reconstruction algorithm limited boundary data Convolutional neural networks Electric impedance Electric impedance measurement Electric impedance tomography Inverse problems Boundary measurements Computational costs Direct sampling method Electrical impedance tomography Fully connected neural network High quality reconstruction Inhomogeneous inclusions Numerical experiments
URL查看原文
收录类别SCIE ; EI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000674142500039
出版者SIAM PUBLICATIONS
EI入藏号20212410494411
EI主题词Deep neural networks
EI分类号701.1 Electricity: Basic Concepts and Phenomena ; 942.2 Electric Variables Measurements
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127945
专题信息科学与技术学院
数学科学研究所_PI研究组(P)_姜嘉骅组
通讯作者Guo, Ruchi
作者单位
1.Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA;
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Guo, Ruchi,Jiang, Jiahua. CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2021,43(3):B678-B711.
APA Guo, Ruchi,&Jiang, Jiahua.(2021).CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY.SIAM JOURNAL ON SCIENTIFIC COMPUTING,43(3),B678-B711.
MLA Guo, Ruchi,et al."CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE TOMOGRAPHY".SIAM JOURNAL ON SCIENTIFIC COMPUTING 43.3(2021):B678-B711.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo, Ruchi]的文章
[Jiang, Jiahua]的文章
百度学术
百度学术中相似的文章
[Guo, Ruchi]的文章
[Jiang, Jiahua]的文章
必应学术
必应学术中相似的文章
[Guo, Ruchi]的文章
[Jiang, Jiahua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1137@20M1367350.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。