消息
×
loading..
Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning
2021-07-06
发表期刊SCIENTIFIC REPORTS (IF:3.8[JCR-2023],4.3[5-Year])
ISSN2045-2322
卷号11期号:1
DOI10.1038/s41598-021-93341-2
摘要To harness the full potential of the ultrafast electron diffraction (UED) and microscopy (UEM), we must know accurately the electron beam properties, such as emittance, energy spread, spatial-pointing jitter, and shot-to-shot energy fluctuation. Owing to the inherent fluctuations in UED/UEM instruments, obtaining such detailed knowledge requires real-time characterization of the beam properties for each electron bunch. While diagnostics of these properties exist, they are often invasive, and many of them cannot operate at a high repetition rate. Here, we present a technique to overcome such limitations. Employing a machine learning (ML) strategy, we can accurately predict electron beam properties for every shot using only parameters that are easily recorded at high repetition rate by the detector while the experiments are ongoing, by training a model on a small set of fully diagnosed bunches. Applying ML as real-time noninvasive diagnostics could enable some new capabilities, e.g., online optimization of the long-term stability and fine single-shot quality of the electron beam, filtering the events and making online corrections of the data for time-resolved UED, otherwise impossible. This opens the possibility of fully realizing the potential of high repetition rate UED and UEM for life science and condensed matter physics applications.
URL查看原文
收录类别SCIE
语种英语
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000672717300001
出版者NATURE PORTFOLIO
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127938
专题物质科学与技术学院_外聘教师
通讯作者Yang, Xi
作者单位
1.SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA;
2.Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA;
3.Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA;
4.Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA;
5.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhe,Yang, Xi,Huang, Xiaobiao,et al. Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning[J]. SCIENTIFIC REPORTS,2021,11(1).
APA Zhang, Zhe.,Yang, Xi.,Huang, Xiaobiao.,Li, Junjie.,Shaftan, Timur.,...&Zhu, Yimei.(2021).Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning.SCIENTIFIC REPORTS,11(1).
MLA Zhang, Zhe,et al."Accurate prediction of mega-electron-volt electron beam properties from UED using machine learning".SCIENTIFIC REPORTS 11.1(2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhe]的文章
[Yang, Xi]的文章
[Huang, Xiaobiao]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhe]的文章
[Yang, Xi]的文章
[Huang, Xiaobiao]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhe]的文章
[Yang, Xi]的文章
[Huang, Xiaobiao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1038@s41598-021-93341-2.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。