ShanghaiTech University Knowledge Management System
Lightweight Deep Learning Model in Mobile-Edge Computing for Radar-Based Human Activity Recognition | |
2021-08-01 | |
发表期刊 | IEEE INTERNET OF THINGS JOURNAL (IF:8.2[JCR-2023],9.0[5-Year]) |
ISSN | 2327-4662 |
卷号 | 8期号:15页码:12350-12359 |
发表状态 | 已发表 |
DOI | 10.1109/JIOT.2021.3063504 |
摘要 | Radar-based human activity recognition (HAR) has great potential in many fields, such as surveillance, smart homes, and human-computer interaction. Complex deep neural networks have brought significant improvement in classification performance but also a surge of computational cost and the number of parameters, which makes it challenging to deploy in mobile devices. However, the existing studies in this area mainly focus on improving the classification accuracy. In this article, we propose an extremely efficient convolutional neural network (CNN) architecture named Mobile-RadarNet, which is specially designed for human activity classification based on micro-Doppler signatures. The new architecture exploits 1-D depthwise convolutions and pointwise convolutions to build lightweight CNN architecture. The experiments on a seven-class human activity data set demonstrate that the proposed Mobile-RadarNet can achieve high classification accuracy meanwhile to keep the computational complexity at an extremely low level, and thus has great potential to be deployed in the mobile devices. |
关键词 | Convolution Feature extraction Spectrogram Radar Computer architecture Computational modeling Task analysis Convolutional neural network (CNN) deep learning (DL) edge computing human activity recognition (HAR) radar signal processing |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000678340800043 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127841 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_娄鑫组 |
作者单位 | 1.School of Electronic and Information Engineering, Shenzhen University, Shenzhen, China 2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
推荐引用方式 GB/T 7714 | Jianping Zhu,Xin Lou,Wenbin Ye. Lightweight Deep Learning Model in Mobile-Edge Computing for Radar-Based Human Activity Recognition[J]. IEEE INTERNET OF THINGS JOURNAL,2021,8(15):12350-12359. |
APA | Jianping Zhu,Xin Lou,&Wenbin Ye.(2021).Lightweight Deep Learning Model in Mobile-Edge Computing for Radar-Based Human Activity Recognition.IEEE INTERNET OF THINGS JOURNAL,8(15),12350-12359. |
MLA | Jianping Zhu,et al."Lightweight Deep Learning Model in Mobile-Edge Computing for Radar-Based Human Activity Recognition".IEEE INTERNET OF THINGS JOURNAL 8.15(2021):12350-12359. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jianping Zhu]的文章 |
[Xin Lou]的文章 |
[Wenbin Ye]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jianping Zhu]的文章 |
[Xin Lou]的文章 |
[Wenbin Ye]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jianping Zhu]的文章 |
[Xin Lou]的文章 |
[Wenbin Ye]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。