segmentation in computed tomography images *
2021-08
发表期刊MEDICAL IMAGE ANALYSIS (IF:10.7[JCR-2023],11.9[5-Year])
ISSN1361-8415
EISSN1361-8423
卷号72
发表状态已发表
DOI10.1016/j.media.2021.102116
摘要

Post-prostatectomy radiotherapy requires accurate annotation of the prostate bed (PB), i.e., the residual tissue after the operative removal of the prostate gland, to minimize side effects on surrounding organs -at-risk (OARs). However, PB segmentation in computed tomography (CT) images is a challenging task, even for experienced physicians. This is because PB is almost a virtual target with non-contrast bound-aries and highly variable shapes depending on neighboring OARs. In this work, we propose an asym-metric multi-task attention network (AMTA-Net) for the concurrent segmentation of PB and surround-ing OARs. Our AMTA-Net mimics experts in delineating the non-contrast PB by explicitly leveraging its critical dependency on the neighboring OARs (i.e., the bladder and rectum), which are relatively easy to distinguish in CT images. Specifically, we first adopt a U-Net as the backbone network for the low-level (or prerequisite) task of the OAR segmentation. Then, we build an attention sub-network upon the backbone U-Net with a series of cascaded attention modules, which can hierarchically transfer the OAR features and adaptively learn discriminative representations for the high-level (or primary) task of the PB segmentation. We comprehensively evaluate the proposed AMTA-Net on a clinical dataset composed of 186 CT images. According to the experimental results, our AMTA-Net significantly outperforms current clinical state-of-the-arts (i.e., atlas-based segmentation methods), indicating the value of our method in reducing time and labor in the clinical workflow. Our AMTA-Net also presents better performance than the technical state-of-the-arts (i.e., the deep learning-based segmentation methods), especially for the most indistinguishable and clinically critical part of the PB boundaries. Source code is released at https://github.com/superxuang/amta-net. Published by Elsevier B.V.

关键词Segmentation Prostate bed Computed tomography Deep learning Multi-task Attention mechanism
收录类别SCIE
语种英语
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000681131600002
出版者ELSEVIER
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127840
专题生物医学工程学院_PI研究组_沈定刚组
通讯作者Shen, Dinggang; Lian, Jun
作者单位
1.Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA;
2.Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA;
3.Univ N Carolina, Dept Radiat Oncol, Chapel Hill, NC 27599 USA;
4.Xian Fiaotong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China;
5.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China;
6.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200030, Peoples R China;
7.Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea;
8.Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Shandong, Peoples R China;
9.Univ Kansas, Dept Radiat Oncol, Med Ctr, Kansas City, KS 66160 USA
通讯作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Xu, Xuanang,Lian, Chunfeng,Wang, Shuai,et al. segmentation in computed tomography images *[J]. MEDICAL IMAGE ANALYSIS,2021,72.
APA Xu, Xuanang.,Lian, Chunfeng.,Wang, Shuai.,Zhu, Tong.,Chen, Ronald C..,...&Lian, Jun.(2021).segmentation in computed tomography images *.MEDICAL IMAGE ANALYSIS,72.
MLA Xu, Xuanang,et al."segmentation in computed tomography images *".MEDICAL IMAGE ANALYSIS 72(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Xuanang]的文章
[Lian, Chunfeng]的文章
[Wang, Shuai]的文章
百度学术
百度学术中相似的文章
[Xu, Xuanang]的文章
[Lian, Chunfeng]的文章
[Wang, Shuai]的文章
必应学术
必应学术中相似的文章
[Xu, Xuanang]的文章
[Lian, Chunfeng]的文章
[Wang, Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。