ShanghaiTech University Knowledge Management System
Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion | |
2021-09-10 | |
发表期刊 | NEUROCOMPUTING (IF:5.5[JCR-2023],5.5[5-Year]) |
ISSN | 0925-2312 |
EISSN | 1872-8286 |
卷号 | 452页码:63-77 |
发表状态 | 已发表 |
DOI | 10.1016/j.neucom.2021.04.060 |
摘要 | Magnetic resonance imaging (MRI) is a major imaging technique for studying neuroanatomy. By applying different pulse sequences and parameters, different modalities can be generated regarding the same anatomical structure, which can provide complementary information for diagnosis. However, limited by the scanning time and related cost, multiple different modalities are often not available for the same patient in clinic. Recently, many methods have been proposed for cross-modality MRI synthesis, but most of them only consider pixel-level differences between the synthetic and ground-truth images, ignoring the edge information, which is critical to provide clinical information. In this paper, we propose a novel edge-preserving MRI image synthesis method with iterative multi-scale feature fusion based generative adversarial network (EP_IMF-GAN). Particularly, the generator consists of a shared encoder and two specific decoders to carry out different tasks: 1) a primary task aiming to generate the target modality and 2) an auxiliary task aiming to generate the corresponding edge image of target modality. We assume that infusing the auxiliary edge image generation task can help preserve edge information and learn better latent representation features through the shared encoder. Meanwhile, an iterative multi-scale fusion module is embedded in the primary decoder to fuse supplementary information of feature maps at different scales, thereby further improving quality of the synthesized target modality. Experiments on the BRATS dataset indicate that our proposed method is superior to the state-of-the-art image synthesis approaches in both qualitative and quantitative measures. Ablation study further validates the effectiveness of the proposed components. (c) 2021 Elsevier B.V. All rights reserved. |
关键词 | Magnetic Resonance Imaging (MRI) Edge-preserving Iterative multi-scale fusion (IMF) Generative Adversarial Networks (GAN) Image synthesis |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000663092000006 |
出版者 | ELSEVIER |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127595 |
专题 | 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Wang, Yan; Shen, Dinggang |
作者单位 | 1.Sichuan Univ, Sch Comp Sci, Chengdu, Sichuan, Peoples R China; 2.Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA; 3.Chengdu Univ Informat Technol, Sch Comp Sci, Chengdu, Sichuan, Peoples R China; 4.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China; 5.Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China; 6.Korea Univ, Dept Artificial Intelligence, Seoul, South Korea |
通讯作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Luo, Yanmei,Nie, Dong,Zhan, Bo,et al. Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion[J]. NEUROCOMPUTING,2021,452:63-77. |
APA | Luo, Yanmei.,Nie, Dong.,Zhan, Bo.,Li, Zhiang.,Wu, Xi.,...&Shen, Dinggang.(2021).Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion.NEUROCOMPUTING,452,63-77. |
MLA | Luo, Yanmei,et al."Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion".NEUROCOMPUTING 452(2021):63-77. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Luo, Yanmei]的文章 |
[Nie, Dong]的文章 |
[Zhan, Bo]的文章 |
百度学术 |
百度学术中相似的文章 |
[Luo, Yanmei]的文章 |
[Nie, Dong]的文章 |
[Zhan, Bo]的文章 |
必应学术 |
必应学术中相似的文章 |
[Luo, Yanmei]的文章 |
[Nie, Dong]的文章 |
[Zhan, Bo]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。