消息
×
loading..
DS-GCNs: Connectome Classification using Dynamic Spectral Graph Convolution Networks with Assistant Task Training
2021-02
发表期刊CEREBRAL CORTEX (IF:2.9[JCR-2023],3.7[5-Year])
ISSN1047-3211
EISSN1460-2199
卷号31期号:2页码:1259-1269
DOI10.1093/cercor/bhaa292
摘要Functional connectivity (FC) matrices measure the regional interactions in the brain and have been widely used in neurological brain disease classification. A brain network, also named as connectome, could form a graph structure naturally, the nodes of which are brain regions and the edges are interregional connectivity. Thus, in this study, we proposed novel graph convolutional networks (GCNs) to extract efficient disease-related features from FC matrices. Considering the time-dependent nature of brain activity, we computed dynamic FC matrices with sliding windows and implemented a graph convolution-based LSTM (long short-term memory) layer to process dynamic graphs. Moreover, the demographics of patients were also used as additional outputs to guide the classification. In this paper, we proposed to utilize the demographic information as extra outputs and to share parameters among three networks predicting subject status, gender, and age, which serve as assistant tasks. We tested the performance of the proposed architecture in ADNI II dataset to classify Alzheimer's disease patients from normal controls. The classification accuracy, sensitivity, and specificity reach 90.0%, 91.7%, and 88.6%, respectively, on ADNI II dataset.
关键词Connectome fMRI GCN
URL查看原文
收录类别SCIE
语种英语
WOS研究方向Neurosciences & Neurology
WOS类目Neurosciences
WOS记录号WOS:000646868100036
出版者OXFORD UNIV PRESS INC
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126543
专题生物医学工程学院_PI研究组_沈定刚组
通讯作者Wang, Tao; Shi, Feng; Shen, Dinggang
作者单位
1.United Imaging Intelligence Co Ltd, Shanghai 201210, Peoples R China;
2.Shanghai Adv Res Inst, Shanghai 201210, Peoples R China;
3.Shanghai Jiao Tong Univ, Shanghai Mental Hlth Ctr, Sch Med, Shanghai 201108, Peoples R China;
4.Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China;
5.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China;
6.Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
通讯作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Xing, Xiaodan,Li, Qingfeng,Yuan, Mengya,et al. DS-GCNs: Connectome Classification using Dynamic Spectral Graph Convolution Networks with Assistant Task Training[J]. CEREBRAL CORTEX,2021,31(2):1259-1269.
APA Xing, Xiaodan.,Li, Qingfeng.,Yuan, Mengya.,Wei, Hao.,Xue, Zhong.,...&Shen, Dinggang.(2021).DS-GCNs: Connectome Classification using Dynamic Spectral Graph Convolution Networks with Assistant Task Training.CEREBRAL CORTEX,31(2),1259-1269.
MLA Xing, Xiaodan,et al."DS-GCNs: Connectome Classification using Dynamic Spectral Graph Convolution Networks with Assistant Task Training".CEREBRAL CORTEX 31.2(2021):1259-1269.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xing, Xiaodan]的文章
[Li, Qingfeng]的文章
[Yuan, Mengya]的文章
百度学术
百度学术中相似的文章
[Xing, Xiaodan]的文章
[Li, Qingfeng]的文章
[Yuan, Mengya]的文章
必应学术
必应学术中相似的文章
[Xing, Xiaodan]的文章
[Li, Qingfeng]的文章
[Yuan, Mengya]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1093@cercor@bhaa292.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。