ShanghaiTech University Knowledge Management System
GPU Optimization for High-Quality Kinetic Fluid Simulation | |
2022-09-01 | |
发表期刊 | IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (IF:4.7[JCR-2023],5.1[5-Year]) |
ISSN | 1077-2626 |
EISSN | 1941-0506 |
卷号 | 28期号:9 |
发表状态 | 已发表 |
DOI | 10.1109/TVCG.2021.3059753 |
摘要 | Fluid simulations are often performed using the incompressible Navier-Stokes equations (INSE), leading to sparse linear systems which are difficult to solve efficiently in parallel. Recently, kinetic methods based on the adaptive-central-moment multiple-relaxation-time (ACM-MRT) model [1], [2] have demonstrated impressive capabilities to simulate both laminar and turbulent flows, with quality matching or surpassing that of state-of-the-art INSE solvers. Furthermore, due to its local formulation, this method presents the opportunity for highly scalable implementations on parallel systems such as GPUs. However, an efficient ACM-MRT-based kinetic solver needs to overcome a number of computational challenges, especially when dealing with complex solids inside the fluid domain. In this paper, we present multiple novel GPU optimization techniques to efficiently implement high-quality ACM-MRT-based kinetic fluid simulations in domains containing complex solids. Our techniques include a new communication-efficient data layout, a load-balanced immersed-boundary method, a multi-kernel launch method using a simplified formulation of ACM-MRT calculations to enable greater parallelism, and the integration of these techniques into a parametric cost model to enable automated parameter search to achieve optimal execution performance. We also extended our method to multi-GPU systems to enable large-scale simulations. To demonstrate the state-of-the-art performance and high visual quality of our solver, we present extensive experimental results and comparisons to other solvers. |
关键词 | Kinetic theory Mathematical model Graphics processing units Computational modeling Solids Optimization Adaptation models GPU optimization parallel computing fluid simulation lattice Boltzmann method immersed boundary method |
学科门类 | 工学 ; 工学::计算机科学与技术(可授工学、理学学位) |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61976138] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | WOS:000833767700013 |
出版者 | IEEE COMPUTER SOC |
来源库 | IEEE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126214 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_范睿组 信息科学与技术学院_PI研究组_刘晓培组 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yixin Chen,Wei Li,Rui Fan,et al. GPU Optimization for High-Quality Kinetic Fluid Simulation[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2022,28(9). |
APA | Yixin Chen,Wei Li,Rui Fan,&Xiaopei Liu.(2022).GPU Optimization for High-Quality Kinetic Fluid Simulation.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,28(9). |
MLA | Yixin Chen,et al."GPU Optimization for High-Quality Kinetic Fluid Simulation".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 28.9(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yixin Chen]的文章 |
[Wei Li]的文章 |
[Rui Fan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yixin Chen]的文章 |
[Wei Li]的文章 |
[Rui Fan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yixin Chen]的文章 |
[Wei Li]的文章 |
[Rui Fan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。