GPU Optimization for High-Quality Kinetic Fluid Simulation
2022-09-01
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (IF:4.7[JCR-2023],5.1[5-Year])
ISSN1077-2626
EISSN1941-0506
卷号28期号:9
发表状态已发表
DOI10.1109/TVCG.2021.3059753
摘要

Fluid simulations are often performed using the incompressible Navier-Stokes equations (INSE), leading to sparse linear systems which are difficult to solve efficiently in parallel. Recently, kinetic methods based on the adaptive-central-moment multiple-relaxation-time (ACM-MRT) model [1], [2] have demonstrated impressive capabilities to simulate both laminar and turbulent flows, with quality matching or surpassing that of state-of-the-art INSE solvers. Furthermore, due to its local formulation, this method presents the opportunity for highly scalable implementations on parallel systems such as GPUs. However, an efficient ACM-MRT-based kinetic solver needs to overcome a number of computational challenges, especially when dealing with complex solids inside the fluid domain. In this paper, we present multiple novel GPU optimization techniques to efficiently implement high-quality ACM-MRT-based kinetic fluid simulations in domains containing complex solids. Our techniques include a new communication-efficient data layout, a load-balanced immersed-boundary method, a multi-kernel launch method using a simplified formulation of ACM-MRT calculations to enable greater parallelism, and the integration of these techniques into a parametric cost model to enable automated parameter search to achieve optimal execution performance. We also extended our method to multi-GPU systems to enable large-scale simulations. To demonstrate the state-of-the-art performance and high visual quality of our solver, we present extensive experimental results and comparisons to other solvers.

关键词Kinetic theory Mathematical model Graphics processing units Computational modeling Solids Optimization Adaptation models GPU optimization parallel computing fluid simulation lattice Boltzmann method immersed boundary method
学科门类工学 ; 工学::计算机科学与技术(可授工学、理学学位)
URL查看原文
收录类别SCI ; EI ; SCIE
语种英语
资助项目National Natural Science Foundation of China[61976138]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000833767700013
出版者IEEE COMPUTER SOC
来源库IEEE
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126214
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_范睿组
信息科学与技术学院_PI研究组_刘晓培组
信息科学与技术学院_本科生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yixin Chen,Wei Li,Rui Fan,et al. GPU Optimization for High-Quality Kinetic Fluid Simulation[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2022,28(9).
APA Yixin Chen,Wei Li,Rui Fan,&Xiaopei Liu.(2022).GPU Optimization for High-Quality Kinetic Fluid Simulation.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,28(9).
MLA Yixin Chen,et al."GPU Optimization for High-Quality Kinetic Fluid Simulation".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 28.9(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yixin Chen]的文章
[Wei Li]的文章
[Rui Fan]的文章
百度学术
百度学术中相似的文章
[Yixin Chen]的文章
[Wei Li]的文章
[Rui Fan]的文章
必应学术
必应学术中相似的文章
[Yixin Chen]的文章
[Wei Li]的文章
[Rui Fan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TVCG.2021.3059753.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。