Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior
2021
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING (IF:10.8[JCR-2023],12.1[5-Year])
ISSN1057-7149
EISSN1941-0042
卷号30页码:3240-3251
发表状态已发表
DOI10.1109/TIP.2021.3059507
摘要

Learning-based single image super-resolution (SISR) aims to learn a versatile mapping from low resolution (LR) image to its high resolution (HR) version. The critical challenge is to bias the network training towards continuous and sharp edges. For the first time in this work, we propose an implicit boundary prior learnt from multi-view observations to significantly mitigate the challenge in SISR we outline. Specifically, the multi-image prior that encodes both disparity information and boundary structure of the scene supervise a SISR network for edge-preserving. For simplicity, in the training procedure of our framework, light field (LF) serves as an effective multi-image prior, and a hybrid loss function jointly considers the content, structure, variance as well as disparity information from 4D LF data. Consequently, for inference, such a general training scheme boosts the performance of various SISR networks, especially for the regions along edges. Extensive experiments on representative backbone SISR architectures constantly show the effectiveness of the proposed method, leading to around 0.6 dB gain without modifying the network architecture.

关键词Single image super resolution multi-view data light field convolutional neural networks Optical resolving power Boundary structure Critical challenges Edge preserving High resolution Low resolution images Network training Training procedures Training schemes
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
WOS研究方向Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS类目Computer Science ; Engineering
WOS记录号WOS:000626322500004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20210910011322
EI主题词Network architecture
EI分类号741.1 Light/Optics
原始文献类型Article
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126112
专题信息科学与技术学院
信息科学与技术学院_PI研究组_许岚组
作者单位
1.Department of Electronic Engineering, Tsinghua University, Beijing, China
2.Department of Automation, Tsinghua University, Beijing, China
3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
4.State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
5.School of Information Science and Engineering, Xinjiang University, Ürümqi, China
推荐引用方式
GB/T 7714
Dingjian Jin,Mengqi Ji,Lan Xu,et al. Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:3240-3251.
APA Dingjian Jin,Mengqi Ji,Lan Xu,Gaochang Wu,Liejun Wang,&Lu Fang.(2021).Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,3240-3251.
MLA Dingjian Jin,et al."Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):3240-3251.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dingjian Jin]的文章
[Mengqi Ji]的文章
[Lan Xu]的文章
百度学术
百度学术中相似的文章
[Dingjian Jin]的文章
[Mengqi Ji]的文章
[Lan Xu]的文章
必应学术
必应学术中相似的文章
[Dingjian Jin]的文章
[Mengqi Ji]的文章
[Lan Xu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。