ShanghaiTech University Knowledge Management System
Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior | |
2021 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING (IF:10.8[JCR-2023],12.1[5-Year]) |
ISSN | 1057-7149 |
EISSN | 1941-0042 |
卷号 | 30页码:3240-3251 |
发表状态 | 已发表 |
DOI | 10.1109/TIP.2021.3059507 |
摘要 | Learning-based single image super-resolution (SISR) aims to learn a versatile mapping from low resolution (LR) image to its high resolution (HR) version. The critical challenge is to bias the network training towards continuous and sharp edges. For the first time in this work, we propose an implicit boundary prior learnt from multi-view observations to significantly mitigate the challenge in SISR we outline. Specifically, the multi-image prior that encodes both disparity information and boundary structure of the scene supervise a SISR network for edge-preserving. For simplicity, in the training procedure of our framework, light field (LF) serves as an effective multi-image prior, and a hybrid loss function jointly considers the content, structure, variance as well as disparity information from 4D LF data. Consequently, for inference, such a general training scheme boosts the performance of various SISR networks, especially for the regions along edges. Extensive experiments on representative backbone SISR architectures constantly show the effectiveness of the proposed method, leading to around 0.6 dB gain without modifying the network architecture. |
关键词 | Single image super resolution multi-view data light field convolutional neural networks Optical resolving power Boundary structure Critical challenges Edge preserving High resolution Low resolution images Network training Training procedures Training schemes |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS类目 | Computer Science ; Engineering |
WOS记录号 | WOS:000626322500004 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20210910011322 |
EI主题词 | Network architecture |
EI分类号 | 741.1 Light/Optics |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126112 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_许岚组 |
作者单位 | 1.Department of Electronic Engineering, Tsinghua University, Beijing, China 2.Department of Automation, Tsinghua University, Beijing, China 3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 4.State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China 5.School of Information Science and Engineering, Xinjiang University, Ürümqi, China |
推荐引用方式 GB/T 7714 | Dingjian Jin,Mengqi Ji,Lan Xu,et al. Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2021,30:3240-3251. |
APA | Dingjian Jin,Mengqi Ji,Lan Xu,Gaochang Wu,Liejun Wang,&Lu Fang.(2021).Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior.IEEE TRANSACTIONS ON IMAGE PROCESSING,30,3240-3251. |
MLA | Dingjian Jin,et al."Boosting Single Image Super-Resolution Learnt From Implicit Multi-Image Prior".IEEE TRANSACTIONS ON IMAGE PROCESSING 30(2021):3240-3251. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Dingjian Jin]的文章 |
[Mengqi Ji]的文章 |
[Lan Xu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Dingjian Jin]的文章 |
[Mengqi Ji]的文章 |
[Lan Xu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Dingjian Jin]的文章 |
[Mengqi Ji]的文章 |
[Lan Xu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。