消息
×
loading..
A Satellite Incipient Fault Detection Method Based on Local Optimum Projection Vector and Kullback-Leibler Divergence
2021-01
发表期刊APPLIED SCIENCES-BASEL (IF:2.5[JCR-2023],2.7[5-Year])
EISSN2076-3417
卷号11期号:2页码:#VALUE!
DOI10.3390/app11020797
摘要Timely and effective detection of potential incipient faults in satellites plays an important role in improving their availability and extending their service life. In this paper, the problem of detecting incipient faults using projection vector (PV) and Kullback-Leibler (KL) divergence is studied in the context of detecting incipient faults in satellites. Under the assumption that the variables obey a multidimensional Gaussian distribution and using KL divergence to detect incipient faults, this paper models the optimum PV for detecting incipient faults as an optimization problem. It proves that the PVs obtained by principal component analysis (PCA) are not necessarily the optimum PV for detecting incipient faults. It then compares the on-line probability density function (PDF) with the reference PDF for detecting incipient faults on the local optimum PV. A numerical example and a real satellite fault case were used to assess the validity and superiority of the method proposed in this paper over conventional methods. Since the method takes into account the characteristics of the actual incipient faults, it is more adaptable to various possible incipient faults. Fault detection rates of three simulated faults and the real satellite fault are 98%, 84%, 93% and 92%, respectively.
关键词Kullback-Leibler (KL) divergence principal component analysis (PCA) optimum projection vector (PV) incipient fault satellite
URL查看原文
收录类别SCI ; SCIE
语种英语
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000610932900001
出版者MDPI
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/125933
专题信息科学与技术学院_特聘教授组_李国通组
通讯作者Li, Guotong
作者单位
1.Innovat Acad Microsatellites CAS, Shanghai 201203, Peoples R China;
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China;
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Ge,Yang, Qiong,Li, Guotong,et al. A Satellite Incipient Fault Detection Method Based on Local Optimum Projection Vector and Kullback-Leibler Divergence[J]. APPLIED SCIENCES-BASEL,2021,11(2):#VALUE!.
APA Zhang, Ge,Yang, Qiong,Li, Guotong,Leng, Jiaxing,&Wang, Long.(2021).A Satellite Incipient Fault Detection Method Based on Local Optimum Projection Vector and Kullback-Leibler Divergence.APPLIED SCIENCES-BASEL,11(2),#VALUE!.
MLA Zhang, Ge,et al."A Satellite Incipient Fault Detection Method Based on Local Optimum Projection Vector and Kullback-Leibler Divergence".APPLIED SCIENCES-BASEL 11.2(2021):#VALUE!.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Ge]的文章
[Yang, Qiong]的文章
[Li, Guotong]的文章
百度学术
百度学术中相似的文章
[Zhang, Ge]的文章
[Yang, Qiong]的文章
[Li, Guotong]的文章
必应学术
必应学术中相似的文章
[Zhang, Ge]的文章
[Yang, Qiong]的文章
[Li, Guotong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@app11020797.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。